McGill at CRAC 2023: Multilingual Generalization of Entity-Ranking Coreference Resolution Models

Ian Porada & Jackie Chi Kit Cheung

Mila, McGill University ian.porada@mail.mcgill.ca

Overview

We apply the **entity-ranking model** originally proposed by **Xia et al.** (2020).*

I'll go over:

- 1. Model details
- 2. Things we tried

*Incremental Neural Coreference Resolution in Constant Memory (Xia et al., EMNLP 2020)

Intuition

Process spans left to right:

score each candidate mention pairwise against a running list of entities.

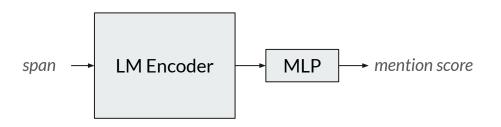
Input document: "He ate an apple. It tasted good."

Input document: "He ate an apple. It tasted good."

- Calculate a set of all spans <= 20 tokens
 - o E.g.{"he", "ate", "an", ..., "he ate", "ate an", ..., "he ate an", ...}

Input document: "He ate an apple. It tasted good."

- Calculate a set of all spans <= 20 tokens
 - o E.g.{"he", "ate", "an", ..., "he ate", "ate an", ..., "he ate an", ...}
- Score each span using a task-specific head



Input document: "He ate an apple. It tasted good."

- Calculate a set of all spans <= 20 tokens
 - o E.g.{"he", "ate", "an", ..., "he ate", "ate an", ..., "he ate an", ...}
- Score each span using a task-specific head



Input document: "He ate an apple. It tasted good."

- Calculate a set of all spans <= 20 tokens
 - o E.g.{"he", "ate", "an", ..., "he ate", "ate an", ..., "he ate an", ...}
- Score each span using a task-specific head
- Keep the spans with the top "**0.4** * **n**" mention scores as candidate mentions
 - o E.g.{"he", "ate", "an apple", "it", "good", "he ate an", ...}

Input document: "He ate an apple. It tasted good."

- Calculate a set of all spans <= 20 tokens
 - o E.g.{"he", "ate", "an", ..., "he ate", "ate an", ..., "he ate an", ...}
- Score each span using a task-specific head
- Keep the spans with the top "**0.4** * **n**" mention scores as candidate mentions
 - o E.g.{"he", "ate", "an apple", "it", "good", "he ate an", ...}
- Remove all spans with a negative score
 - o E.g. candidate mentions = {"he", "ate", "an apple", "it", "good"}

Input document: "He ate an apple. It tasted good."

Step 1: Find mention candidates.

Input document: "He ate an apple. It tasted good."

Step 1: Find mention candidates.

Step 2: Assign each mention candidate to an entity (i.e., a cluster).

• Initialize a set of entities E = {}

Input document: "He ate an apple. It tasted good."

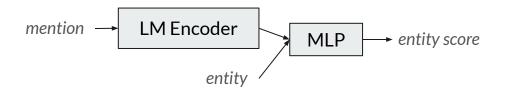
Step 1: Find mention candidates.

- Initialize a set of entities E = {}
- Process mentions left to right

Input document: "He ate an apple. It tasted good."

Step 1: Find mention candidates.

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head



Input document: "He ate an apple. It tasted good."

Step 1: Find mention candidates.

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head
 - If all entities scores are < 0, add a new entity to E
 - Otherwise, the mention refers to the entity with the highest score

Input document: "He ate an apple. It tasted good."

Step 1: Find mention candidates.

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head
 - If all entities scores are < 0, add a new entity to E
 - Otherwise, the mention refers to the entity with the highest score
 - Update the representation of that entity

Step 1: Find mention candidates.

Step 2: Assign each mention candidate to an entity (i.e., a cluster).

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head
 - If all entities scores are < 0, add a new entity to E
 - Otherwise, the mention refers to the entity with the highest score
 - Update the representation of that entity

Input document: "He ate an apple. It tasted good."

```
mentions = {"he", "an apple", "it"}
```

```
1. E = \{he\}
```

2. E=

Step 1: Find mention candidates.

Step 2: Assign each mention candidate to an entity (i.e., a cluster).

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head
 - If all entities scores are < 0, add a new entity to E</p>
 - Otherwise, the mention refers to the entity with the highest score
 - Update the representation of that entity

Input document: "He ate an apple. It tasted good."

```
mentions = {"he", "an apple", "it"}
```

```
1. E = \{he\}
```

2. $E = \{he, an apple\}$

Step 1: Find mention candidates.

Step 2: Assign each mention candidate to an entity (i.e., a cluster).

- Initialize a set of entities E = {}
- Process mentions left to right
 - Score the current mention against all entities in E using a task-specific head
 - If all entities scores are < 0, add a new entity to E
 - Otherwise, the mention refers to the entity with the highest score
 - Update the representation of that entity

Input document: "He ate an apple. It tasted good."

```
mentions = {"he", "an apple", "it"}
```

- 1. $E = \{he\}$
- 2. $E = \{he, an apple\}$
- 3. $E = \{he, (an apple, it)\}$

Experiments

Data Processing

- 1. Input: Use udapi to convert CorefUD to json
 - a. For GUM, we extract speaker information from headers
 - b. We treat zero anaphors as the underscore token ("_")
- 2. Output: Use`udapy -s corefud.MoveHead` to calculate syntactic heads

Experiment 2: Mixing strategy

Mixing strategy (XLM-R base encoder)	CoNLL F1 (exact match)
Uniform	62.78
Proportional	64.68
Proportional w.r.t. = min(size, 500)	64.86

Experiment 1: Encoder

Encoder (large size)	CoNLL F1 (exact match)	
XLM-Roberta	67.32	
MT5	64.76	

Conclusion

Entity-ranking models serve as a reasonable baseline with some simple adaptations.

system	head-match	partial-match	exact-match	with singletons
1. CorPipe	74.90	73.33	71.46	76.82
2. Anonymous	70.41	69.23	67.09	73.20
3. Ondfa	69.19	68.93	53.01	68.37
4. McGill	65.43	64.56	63.13	68.23
5. DeepBlueAI	62.29	61.32	59.95	54.51
6. DFKI-Adapt	61.86	60.83	59.18	53.94
7. ITUNLP	59.53	58.49	56.89	52.07
8. BASELINE	56.96	56.28	54.75	49.32
9. DFKI-MPrompt	53.76	51.62	50.42	46.83