Neural End-to-End Coreference Resolution using Morphological Information

Tuğba Pamay-Arslan* Kutay Acar[†] Gülşen Eryiğit*

İTÜ NLP Research Group
Department of [Al&Data*, Computer†] Engineering
Faculty of Computer&Informatics
Istanbul Technical University
[*pamay, †acarku18, *gulsen.cebiroglu]@itu.edu.tr

2023

Introduction

Coreference Resolution (CR)

The task of determining coreferential relations between mentions referring to the same real-world entity in a document.

For Morphologically Rich Languages

- Words consist of morphemes containing deeper information.
- May necessitate the use of morpheme-level representations as well as word representations.

For Pro-Dropped Languages

• Dropped-pronouns can be deducible from morphology.

Introduction

Example¹:

Sen [benim] [anne[m]in] geldiğ[i]ni gördün mü?
Sen benim annemin geldiğini gördün mü?
You my mother came see_did
Did you see the coming of my mother?

The Proposed Model

- Baseline-based model
- End-to-end, neural, multilingual
- Enhanced span representation: Incorporating morphological information <u>explicitly</u> in contextual embeddings obtained by BERT.
- Morphological information: UPOS and/or Morphological features
- Inspired from Pamay-Arslan and Eryiğit (2023)
- Our Team: TrCr
- Our Submitted System: morphbase

The Proposed Model

BASE Span Embedding

- Embeddings of a mention's first token
- Embeddings of a mention's last token
- The head-attended embedding of a mention of all tokens

$$e(s_i) = e(s_{i_{first}}) \oplus e(s_{i_{last}}) \oplus e(s_{i_{head}})$$
 (1)

where s_i represents the ith span, and $e(s_i)$ indicates the embedding of the related span.

The Proposed Model

ENHANCED Span Embedding

• Extends the <u>first</u> and <u>last</u> tokens' embeddings by incorporating one/multi-hot encoded morphological information.

$$e(s_{i_{first}}) = e(s_{i_{first}}[form]) \oplus enc(s_{i_{first}}[upos]) \oplus enc(s_{i_{first}}[feats])$$
 (2)

$$e(s_{i_{last}}) = e(s_{i_{last}}[\textit{form}]) \oplus \textit{enc}(s_{i_{last}}[\textit{upos}]) \oplus \textit{enc}(s_{i_{last}}[\textit{feats}]) \quad (3)$$

$$e_{enh}(s_i) = e_{enh}(s_{i_{first}}) \oplus e_{enh}(s_{i_{last}}) \oplus e(s_{i_{head}})$$
 (4)

Experimental Setup

Hyper-parameters

- BERT (Devlin et al. (2019)) : Multilingual, base, and case sensitive.
- Default hyper-parameters^a, except maximum segment length being 256 instead of 512.

a https://github.com/ondfa/coref-multiling/blob/master/experiments.conf

Encoded Morphological Information

Sparse Representation

- UPOS: One-hot encoding #Unique UPOS tags:20
- Morphological Features: Multi-hot encoding #Unique Feats:210

Example

```
For a token:  \begin{array}{l} \text{UPOS='NOUN'} \\ \text{FEATS='Case=Nom|Number=Plur', then} \\ \textbf{upos}_{enc} = [00100000...] \\ \textbf{feats}_{enc} = [0100100...] \end{array}
```


Embedded Morphological Information

- Embedding layers with the dimension of 5 are deployed for UPOS and features, separately.
- For *Morphological Features*, multiple features are averaged out to preserve dimensionality.

Results

System	CoNLL
BASELINE	58.99
$+\{U,F\}_{emb}$	60.75
$+\{U\}_{enc}$	61.27
$+\{U,F\}_{enc}$ (morphbase)	61.35

Table: The performances of the intermediate and the proposed models evaluated on the development sets (CoNLL score in %).

- U indicates the use of universal POS tags.
- F indicates the use of morphological features.

^{*}All models exploiting morphological information surpass the performance of the baseline model by varying amounts.

Results

System	CoNLL
BASELINE	58.99
$+\{U,F\}_{emb}$	60.75
$+\{U\}_{enc}$	61.27
$+\{U,F\}_{enc}$ (morphbase)	61.35

- $\{U,F\}_{emb}$ vs. BASELINE: $\uparrow 1.76$ percentage points.
- $\{U\}_{enc}$ vs. $\{U,F\}_{emb}$: $\uparrow 0.52$ percentage points.
- {U,F}_{enc} vs. BASELINE: ↑ 2.36 percentage points. The sparse encoding technique performs better in capturing sparse tag combinations.

Dev Set Results on all languages

System	AVG	ca_ ancora	cs_poedt	cs_pdt	de_parcor	de_potsdam	en_gum	en_parcor	es_ancora	fr_democrat	pagazs_nq	lt_loc	pl_pcc	ru_rcr	hu_korkor	no_bokmaa	no_nynorsk	tr_itcc
BASELINE	58.99	65.60	65.72	65.66	57.25	56.07	66.87	56.56	67.00	57.22	58.96	66.96	64.17	63.04	48.38	58.44	68.78	16.15
morphbase	61.35	68.85	67.97	66.05	50.10	63.51	65.42	44.85	69.98	59.77	59.19	72.74	65.61	62.93	53.25	71.02	69.15	32.63
Diff	↑ 2.36	↑ 3.25	↑ 2.25	↑ 0.39	↓ 7.15	↑ 7.44	↓ 1.45	↓ 11.71	↑ 2.98	↑ 2.55	↑ 0.23	↑ 5.78	↑ 1.44	↓ 0.11	↑ 4.87	↑ 12.58	↑ 0.37	↑ 16.48

Table: Dev set results for individual languages in the primary metric.

- Enhanced span representation achieves 61.35% CoNLL performance on average, which is higher than 2.36 percentage points on development set.
- morphbase improves the performance of the following morphologically rich languages: Catalan, Czech, Hungarian, Spanish, French, Lithuanian, Polish, Norwegian, and Turkish.

Test Set Results on all languages

System	AVG	ca_ancora	cs_pcedt	cs_pdt	de_parcor	de_potsdam	en_gum	en_parcor	es_ancora	fr_democrat	hu_szeged	lt S	pl_pcc	ים_ ומי	hu_korkor	no_bokmaa	no_ny norsk	tr_itcc
BASELINE	56.96	65.26	67.72	65.22	44.11	57.13	63.08	35.19	66.93	55.31	55.32	63.57	66.08	69.03	40.71	65.10	65.78	22.75
morphbase	59.53	68.23	64.89	64.74	39.96	64.87	62.80	40.81	69.01	53.18	56.41	64.08	67.88	68.53	52.91	68.17	66.35	39.22
Diff	↑ 2.57	↑ 2.97	↓ 2.83	↓ 0.48	↓ 4.15	↑ 7.74	↓ 0.28	↑ 5.62	↑ 2.08	↓ 2.13	↑ 1.09	↑ 0.51	↑ 1.8	↓ 0.5	↑ 12.2	↑ 3.07	↑ 0.57	↑ 16.47

Table: Test set results for individual languages in the primary metric.

- Enhanced span representation achieves 59.53% CoNLL performance on average, which is higher than 2.57 percentage points on test set.
- morphbase improves the performance of the following morphologically rich languages: Catalan, Czech, Hungarian, Spanish, French, Lithuanian, Polish, Norwegian, and Turkish.

Conclusion

- morphbase is ranked at 7th place in the shared task.
- On individual dataset scores, our (team TrCr) highest rank is on Catalan (ca_ancora), which is the 5th place.
- Then, it is followed by 6th place on Turkish (tr_itcc), Hungarian (hu_korkor), German (de_potsdamcc), and English (en_parcorfull) datasets.
- For Hungarian, a significant increase is obtained on hu_korkor dataset by 4.87 and 12.2 percentage points on the development and test sets, respectively.
- For Norwegian which exhibits agglutinative characteristics on verbal suffixes, the baseline model is surpassed by 12.58% percentage points on the development set.

References I

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Pamay-Arslan, T. and Eryiğit, G. (2023). Incorporating dropped pronouns into coreference resolution: The case for turkish. In *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop*, pages 14–25.

