CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Recent Computational Approaches to Coreference Resolution

Milan Straka Institute of Formal and Applied Linguistics Charles University

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Coreference Resolution – Byron Biography from en_gum

Ú F_AL

Education and early loves

Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]

Placed under the care of a Dr. Bailey, he was encouraged to exercise in moderation but not restrain himself from "violent" bouts in an attempt to overcompensate for his deformed foot.

His mother interfered with his studies, often withdrawing him from school, with the result that he lacked discipline and his classical studies were neglected.

In 1801, he was sent to Harrow, where he remained until July 1805. [6]

An undistinguished **student** and an unskilled **cricketer**, **he** did represent the **school** during the very first **Eton** v **Harrow cricket match** at **Lord** 's in **1805**. [19]

His lack of moderation was not restricted to physical exercise.

Byron fell in love with Mary Chaworth, whom he met while at school, [6] and she was the reason he refused to return to Harrow in September 1803.

His mother wrote, "**He** has no **indisposition** that **I** know of but **love**, desperate **love**, the **worst** of all **maladies** in **my opinion**. In short, the **boy** is distractedly in love with **Miss** Chaworth." **[6]**

In Byron 's later memoirs, "Mary Chaworth is portrayed as the first object of his adult sexual feelings." [20]

Byron finally returned in January 1804, [6] to a more settled period which saw the formation of a circle of emotional involvements with other Harrow boys, which he recalled with great vividness : "My school friendships were with me passions (for I was always violent)." [21]

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023 Model Zoo Multiple Languages Unseen Languages Thank You 2/65

Model Zoo

Model Zoo

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

es Unseen Languages

Thank You

e2e: End-to-end Neural Coreference Resolution Lee et al. (2017)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages U

Unseen Languages

Thank You

• Every possible span considers all preceding spans and ε as antecedents.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

le Languages Unseen Languages

Thank You

- Every possible span considers all preceding spans and ε as antecedents.
- For a span i = (start(i), end(i)), the score of span j being an antecedent of span i is computed as

$$s(i,j) = egin{cases} 0 ext{ if } j = arepsilon, \ s_m(i) + s_m(j) + s_a(i,j) ext{ otherwise.} \end{cases}$$

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

iguages Unseen Languages

Thank You

• Span is represented as

$$oldsymbol{g}_i = ig[oldsymbol{x}_{ ext{start}(i)},oldsymbol{x}_{ ext{end}(i)}, extstyle ext{soft head } \sum_{t= ext{start}(i)}^{ ext{end}(i)} lpha_t oldsymbol{x}_t, ext{span features } arphi(i)ig].$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

• Span is represented as

$$m{g}_i = ig[m{x}_{ ext{start}(i)},m{x}_{ ext{end}(i)}, \textit{soft head} \ \sum_{t= ext{start}(i)}^{ ext{end}(i)} lpha_t m{x}_t, \textit{span features} \ arphi(i)ig]$$

Model Zoo

• Mention score $s_m(i) = f_m(\boldsymbol{g}(i)),$

Softmax $(P(y_i | D))$ s(the company, $\epsilon) = 0$ s(the company, $\epsilon) = 0$ s(the company, $\epsilon)$ coreference Antecedent score (s_n) Mention score (s_m) General Electric the Postal Service the company *General Electric the Postal Service the company General El*

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Thank You

Unseen Languages

• Span is represented as

$$m{g}_i = ig[m{x}_{ ext{start}(i)},m{x}_{ ext{end}(i)}, \textit{soft head} \ \sum_{t= ext{start}(i)}^{ ext{end}(i)} lpha_t m{x}_t, \textit{span features} \ arphi(i)ig]$$

Model Zoo

- Mention score $s_m(i) = f_m(\boldsymbol{g}(i)),$
- antecedent score $s_a(i,j) = f_a([m{g}_i,m{g}_j,m{g}_i\odotm{g}_j,arphi(i,j)]).$

(*i*, *j*)]). Mention score (sm) Span representation (g) General Electric the Postal Service the company Figure 2 of "End-to-end Neural Coreference Resolution", Lee et al. (2017) Substances States States

Softmax (P(u

Coreference score (s)

Antecedent score (s_a)

s(the company, ϵ) = s(the company.

General Electric)

Multiple Languages

6/65

s(the company, the Postal Service)

• However, there are up to $\mathcal{O}(n^4)$ span-span combinations.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Lan

Multiple Languages

Unseen Languages Thank You

• However, there are up to $\mathcal{O}(n^4)$ span-span combinations. \circ consider spans to a maximum length L = 10;

However, there are up to O(n⁴) span-span combinations.
 consider spans to a maximum length L = 10;
 keep only λn spans for λ = 0.4 with maximum s_m(i);

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Lar

Multiple Languages

Unseen Languages

Thank You

- However, there are up to O(n⁴) span-span combinations.
 consider spans to a maximum length L = 10;
 keep only λn spans for λ = 0.4 with maximum s_m(i);
 - $^{\circ}$ for each span, consider up to K=250 nearest mentions.

Model Zoo

Languages Unseen Languages

Thank You

- However, there are up to $\mathcal{O}(n^4)$ span-span combinations. \circ consider spans to a maximum length L=10;
 - $^{\circ}$ keep only λn spans for $\lambda=0.4$ with maximum $s_m(i)$;
 - $^{\circ}\,$ for each span, consider up to K=250 nearest

mentions.

Figure 3 of "End-to-end Neural Coreference Resolution", Lee et al. (2017)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

anguages Unseen Languages

Thank You

Model Results

Model Results

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

/ \

Paper	Model	Ø/ELMo/ base PLM
Lee et al. (2017)	e2e	67.2 _Ø

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Lan

Multiple Languages

Unseen Languages

Thank You

Paper	Model	Ø/ELMo/ base PLM
Lee et al. (2017)	e2e	67.2 _Ø
Lee et al. (2018)	e2e	70.4 _{ELMo}

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

c2f: Higher-order Coreference Resolution with Coarse-to-fine Inference

Lee et al. (2018)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

anguages Unseen Languages

Thank You

• Scoring function is extended by assing $s_c(i,j)$:

$$s(i,j) = egin{cases} 0 ext{ if } j = arepsilon, \ s_m(i) + s_m(j) + s_c(i,j) + s_a(i,j) ext{ otherwise}, \end{cases}$$

• Scoring function is extended by assing $s_c(i,j)$:

$$s(i,j) = egin{cases} 0 ext{ if } j = arepsilon, \ s_m(i) + s_m(j) + s_c(i,j) + s_a(i,j) ext{ otherwise}, \end{cases}$$

where

$$s_c(i,j) = oldsymbol{g}_i^T oldsymbol{W}_c oldsymbol{g}_j pprox (oldsymbol{W}_q oldsymbol{g}_i)^T (oldsymbol{W}_k oldsymbol{g}_j).$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Languages Unseen Languages

Thank You

• Scoring function is extended by assing $s_c(i,j)$:

$$s(i,j) = egin{cases} 0 ext{ if } j = arepsilon, \ s_m(i) + s_m(j) + s_c(i,j) + s_a(i,j) ext{ otherwise}, \end{cases}$$

where

$$s_c(i,j) = oldsymbol{g}_i^T oldsymbol{W}_c oldsymbol{g}_j pprox (oldsymbol{W}_q oldsymbol{g}_i)^T (oldsymbol{W}_k oldsymbol{g}_j).$$

• Two-step pruning: 1. keep λn spans with highest $s_m(i)$ and maximum length L=30,

Thank You

• Scoring function is extended by assing $s_c(i,j)$:

$$s(i,j) = egin{cases} 0 ext{ if } j = arepsilon, \ s_m(i) + s_m(j) + s_c(i,j) + s_a(i,j) ext{ otherwise}, \end{cases}$$

where

$$s_c(i,j) = oldsymbol{g}_i^T oldsymbol{W}_c oldsymbol{g}_j pprox (oldsymbol{W}_q oldsymbol{g}_i)^T (oldsymbol{W}_k oldsymbol{g}_j).$$

Two-step pruning:
1. keep λn spans with highest s_m(i) and maximum length L = 30,
2. keep K = 50 top antecedents according to s_m(i), s_m(j), s_c(i, j).

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

Paper	Model	Ø/ELMo/ base PLM
Lee et al. (2017)	e2e	67.2 _Ø
Lee et al. (2018)	e2e	70.4 _{ELMo}
Lee et al. (2018)	c2f	73.0 _{ELMo}

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Thank You

Paper	Model	Ø/ELMo/ base PLM
Lee et al. (2017)	e2e	67.2 _Ø
Lee et al. (2018)	e2e	70.4 _{ELMo}
Lee et al. (2018)	c2f	73.0 _{ELMo}
Joshi et al. (2019)	c2f	73.9 _{BERT}

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M
Lee et al. (2017)	e2e	67.2 _Ø	
Lee et al. (2018)	e2e	70.4 _{ELMo}	
Lee et al. (2018)	c2f	73.0 _{ELMo}	
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}

SpanBERT: Improving Pre-training by Repr. and Pred. Spans

Ú_F≩L

SpanBERT: Improving Pre-training by Representing and Predicting Spans Joshi et al. (2020)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages

Thank You

SpanBERT: Improving Pre-training by Repr. and Pred. Spans

UFAL

 $= -\log P(\text{football} \mid \mathbf{x}_7) - \log P(\text{football} \mid \mathbf{x}_4, \mathbf{x}_9, \mathbf{p}_3)$

Figure 1: An illustration of SpanBERT training. The span *an American football game* is masked. The span boundary objective (SBO) uses the output representations of the boundary tokens, x_4 and x_9 (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, *football* (in pink), which as marked by the position embedding p_3 , is the *third* token from x_4 .

Figure 1 of "SpanBERT: Improving Pre-training by Representing and Predicting Spans", Joshi et al. (2020)

SpanBERT: Improving Pre-training by Repr. and Pred. Spans

 $\mathcal{L}(\text{football}) = \mathcal{L}_{MLM}(\text{football}) + \mathcal{L}_{SBO}(\text{football})$

 $= -\log P(\text{football} \mid \mathbf{x}_7) - \log P(\text{football} \mid \mathbf{x}_4, \mathbf{x}_9, \mathbf{p}_3)$

Figure 1: An illustration of SpanBERT training. The span *an American football game* is masked. The span boundary objective (SBO) uses the output representations of the boundary tokens, x_4 and x_9 (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, *football* (in pink), which as marked by the position embedding p_3 , is the *third* token from x_4 .

Figure 1 of "SpanBERT: Improving Pre-training by Representing and Predicting Spans", Joshi et al. (2020)

• MLM, Span Boundary Objective, no NSP (single segment like RoBERTa)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple L

Multiple Languages

Unseen Languages

Thank You

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M
Lee et al. (2017)	e2e	67.2 _Ø	
Lee et al. (2018)	e2e	70.4 _{ELMo}	7/1
Lee et al. (2018)	c2f	73.0 _{ELMo}	
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}
Joshi et al. (2020)	c2f		79.6 _{SpanB}

s2e: Coreference Resolution without Span Representations

Kirstain et al. (2021)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

• A span is represented purely using its starting and ending token

$$oldsymbol{m}^s = f^s_m(oldsymbol{x}), \qquad oldsymbol{m}^e = f^e_m(oldsymbol{x}).$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Languages Unseen Languages

Thank You

A span is represented purely using its starting and ending token

$$oldsymbol{m}^s = f^s_m(oldsymbol{x}), \qquad oldsymbol{m}^e = f^e_m(oldsymbol{x}).$$

• Mention score for a mention from token i to token j is then

$$s_m(i,j) = oldsymbol{v}_s^Toldsymbol{m}_i^s + oldsymbol{v}_e^Toldsymbol{m}_j^e + (oldsymbol{m}_i^s)^Toldsymbol{W}_moldsymbol{m}_j^e.$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

_anguages Unseen Languages

Thank You

A span is represented purely using its starting and ending token

$$oldsymbol{m}^s = f^s_m(oldsymbol{x}), \qquad oldsymbol{m}^e = f^e_m(oldsymbol{x}).$$

• Mention score for a mention from token i to token j is then

$$s_m(i,j) = oldsymbol{v}_s^Toldsymbol{m}_i^s + oldsymbol{v}_e^Toldsymbol{m}_j^e + (oldsymbol{m}_i^s)^Toldsymbol{W}_moldsymbol{m}_j^e.$$

• Mention score is computed for all spans, and only λn are kept. • Maximum span length L is used for its inductive bias.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

e Languages Unseen Languages

Thank You

A span is represented purely using its starting and ending token

$$oldsymbol{m}^s = f^s_m(oldsymbol{x}), \qquad oldsymbol{m}^e = f^e_m(oldsymbol{x}).$$

• Mention score for a mention from token i to token j is then

$$oldsymbol{s}_m(i,j) = oldsymbol{v}_s^Toldsymbol{m}_i^s + oldsymbol{v}_e^Toldsymbol{m}_j^e + (oldsymbol{m}_i^s)^Toldsymbol{W}_moldsymbol{m}_j^e.$$

- Mention score is computed for all spans, and only λn are kept. • Maximum span length L is used for its inductive bias.
- Antecedent score is $s_a(i_1, j_1, i_2, j_2) = [{m a}_{i_1}^s, {m a}_{j_1}^e]^T {m W}_a[{m a}_{i_2}^s, {m a}_{j_2}^e]$ for

$$oldsymbol{a}^s = f^s_a(oldsymbol{x}), \qquad oldsymbol{a}^e = f^e_a(oldsymbol{x}).$$

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M
Lee et al. (2017)	e2e	67.2 _Ø	
Lee et al. (2018)	e2e	70.4 _{ELMo}	7/1
Lee et al. (2018)	c2f	73.0 _{ELMo}	
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}
Joshi et al. (2020)	c2f	\leq	79.6 _{SpanB}
Kirstain et al. (2021)	s2e		80.3 _{Longf}

LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Languages Unseen Languages

Thank You

Manual classification of links into 6 classes:

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}$ ("Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

Manual classification of links into 6 classes:

• PRON-PRON-C: compatible pronouns,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}$ ("Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

5 Unseen Languages

Thank You

LingMess: Linguistically Informed Multi Expert Scorers for CR Ú_F∡L

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

LingMess: Linguistically Informed Multi Expert Scorers for CR Ú_F∡L

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,
- OTHER.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,

OTHER.

Create seven antecedent scores – a generic one, and one for every link class.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}($ "Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

LingMess: Linguistically Informed Multi Expert Scorers for CR ^UF

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,
- OTHER.

Create seven antecedent scores – a generic one, and one for every link class.

Final antecedent score is a sum of the generic antecedent score and the score of the corresponding class-specific score.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), f_m ("Lionel Messi"), f_m ("He"), and pairwise scores, shared antecedent score (white) f_a ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_a^{\text{PRON-ENT}}$ ("Lionel Messi", "He").

Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Model Zoo

Unseen Languages Thank You

Model OntoNotes English Results

0				
Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	
Lee et al. (2017)	e2e	67.2 _Ø		
Lee et al. (2018)	e2e	70.4 _{ELMo}		
Lee et al. (2018)	c2f	73.0 _{ELMo}		
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}	
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}	
Kirstain et al. (2021)	s2e		80.3 _{Longf}	
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}	

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

WL: Word-Level Coreference Resolution Dobrovolskii (2021)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

Ú_F_AL

• Represent each span by its **head**.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages That

Thank You

Ú_F≩L

• Represent each span by its **head**.

 $^{\circ}\,$ Syntactic head is used by the author.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages TI

Thank You

Ú FAL

- Represent each span by its head.
 Syntactic head is used by the author.
- We start by computing token representation

 $oldsymbol{t} = oldsymbol{W}_A oldsymbol{x}.$

- Represent each span by its head. Syntactic head is used by the author. 0
- We start by computing token representation

$$\boldsymbol{t} = \boldsymbol{W}_A \boldsymbol{x}.$$

• We then compute bilinear (coarse) antecedent score

$$s_c(i,j) = oldsymbol{t}_i^Toldsymbol{W}_Coldsymbol{t}_j,$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

Ú FAL

- Represent each span by its head.
 Syntactic head is used by the author.
- We start by computing token representation

$$\boldsymbol{t} = \boldsymbol{W}_A \boldsymbol{x}.$$

• We then compute bilinear (coarse) antecedent score

$$s_c(i,j) = oldsymbol{t}_i^Toldsymbol{W}_Coldsymbol{t}_j,$$

and keep the k most likely antecedent for every mention.

guages Unseen Languages

Thank You

- Represent each span by its head.
 Syntactic head is used by the author.
- We start by computing token representation

$$\boldsymbol{t} = \boldsymbol{W}_A \boldsymbol{x}.$$

• We then compute bilinear (coarse) antecedent score

$$s_c(i,j) = oldsymbol{t}_i^Toldsymbol{W}_Coldsymbol{t}_j,$$

Model Zoo

and keep the k most likely antecedent for every mention.

• Finally, we compute $s(i,j) = s_c(i,j) + s_a(i,j)$ for $s_a(i,j) = f_a([\boldsymbol{t}_i, \boldsymbol{t}_j, \boldsymbol{t}_i \odot \boldsymbol{t}_j, \varphi(i,j)]);$

Unseen Languages

- Represent each span by its head.
 Syntactic head is used by the author.
- We start by computing token representation

$$\boldsymbol{t} = \boldsymbol{W}_A \boldsymbol{x}.$$

• We then compute bilinear (coarse) antecedent score

$$s_c(i,j) = oldsymbol{t}_i^Toldsymbol{W}_Coldsymbol{t}_j,$$

and keep the k most likely antecedent for every mention.

• Finally, we compute $s(i,j) = s_c(i,j) + s_a(i,j)$ for $s_a(i,j) = f_a([t_i, t_j, t_i \odot t_j, \varphi(i,j)]); s_a(i,j) < 0$ implies no link.

Model Zoo

Multiple Languages

inguages Unseen Languages

 Heads are extended into spans by a span extraction module:

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; SA is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", VladimirDobrovolski (2021)

e Languages Unseen Languages

- Heads are extended into spans by a span extraction module:
 - the head token representation is concatenated to all token representations,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; SA is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", VladimirDobrovolski (2021)

le Languages Unseen Languages

- Heads are extended into spans by a span extraction module:
 - the head token representation is concatenated to all token representations,
 - passed through a feed forward network,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; SA is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

- Heads are extended into spans by a span extraction module:
 - the head token representation is concatenated to all token representations,
 - passed through a feed forward network,
 - passed through a 1D convolution with kernel size 3,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; SA is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", VladimirDobrovolski (2021)

le Languages Unseen Languages

- Heads are extended into spans by a span extraction module:
 - the head token representation is concatenated to all token representations,
 - passed through a feed forward network,
 - passed through a 1D convolution with kernel size 3,
 - the resulting 2 outputs for every token are logits of that token being the starting or ending token of the span.

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; SA is the span.
extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

e Languages Unseen Languages

Model

WL

Dobrovolskii (2021)

odel OntoNotes English Results					
Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M		
Lee et al. (2017)	e2e	67.2 _Ø			
Lee et al. (2018)	e2e	70.4 _{ELMo}			
Lee et al. (2018)	c2f	73.0 _{ELMo}			
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}		
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}		
Kirstain et al. (2021)	s2e		80.3 _{Longf}		
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}		

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

81.0_{RoBE}

Unseen Languages

Thank You

CAW: Conjunction-Aware Word-level Coreference Resolution

Ú F_ÁL

CAW: Conjunction-Aware Word-level Coreference Resolution

D'Oosterlinck et al. (2023)

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages

Thank You

CAW: Conjunction-Aware Word-level Coreference Resolution

Word-Level coref has routine errors on conjoined entities.

Error type 1: WL-coref does not link Tom and Mary to They

Tom and Mary are playing. He is 7 years old. They are siblings.

Error type 2: WL-coref links They to Tom, instead of Tom and Mary

Tom and Mary are talking. They are talking.

Figure 1: We identify two types of failure cases for WL-coref when processing conjoined mentions. Our simple solution, CAW-coref, addresses these errors. Figure 1 of "CAW-coref: Conjunction-Aware Word-level Coreference Resolution", D'Oosterlinck et al. (2023)

le Languages Unseen Languages

Model OntoNotes English Results

	Ú

FAL

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M
Lee et al. (2017)	e2e	67.2 _Ø	
Lee et al. (2018)	e2e	70.4 _{ELMo}	21
Lee et al. (2018)	c2f	73.0 _{ELMo}	
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}
Kirstain et al. (2021)	s2e		80.3 _{Longf}
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}
Dobrovolskii (2021)	WL		81.0 _{RoBE}
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Thank You

ASP: Autoregressive Structured Prediction with Language Models

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages

Thank You

INPUT US President Joe Biden took office in 2021. Previously, he was the senator of Delaware.

Figure 1: Illustration of the target outputs of our framework on coreference resolution (COREF) and end-to-end relation extraction (ERE). The lower part illustrates the decoding process of our model. The actions y_i are color-coded as], [* and copy. The structure random variables z_i are presented along with coreference links or relation links. We present words in the copy cells merely as an illustration.

Figure 1 of "Autoregressive Structured Prediction with Language Models", Liu et al. (2022)

Ú_F_AL

At each step, the output consists of a triple:

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages Tha

Thank You

Ú FAL

At each step, the output consists of a triple:

• an action [*, copy,];

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages That

Thank You

Ú FAL

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages Th

Thank You

Ú_F^{AL}

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;
- if the action is], a pointer to an antecedent represented by its], or to ε .

Ú_F≩L

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;
- if the action is], a pointer to an antecedent represented by its], or to ε .

The local probabilities are computed using a softmax over a dynamic set with a parametrized scoring function.

Model OntoNotes English Results

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M
Lee et al. (2017)	e2e	67.2 _Ø	
Lee et al. (2018)	e2e	70.4 _{ELMo}	7/
Lee et al. (2018)	c2f	73.0 _{ELMo}	
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}
Kirstain et al. (2021)	s2e		80.3 _{Longf}
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}
Dobrovolskii (2021)	WL		81.0 _{RoBE}
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xl PLM ~3B
Lee et al. (2017)	e2e	67.2 _Ø		
Lee et al. (2018)	e2e	70.4 _{ELMo}		1
Lee et al. (2018)	c2f	73.0 _{ELMo}		
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}	
Joshi et al. (2020)	c2f	\leq	79.6 _{SpanB}	
Kirstain et al. (2021)	s2e		80.3 _{Longf}	
Otmazgin et al. (2023)	LingMess/s2e	No la compañía de la	81.4 _{Longf}	
Dobrovolskii (2021)	WL		81.0 _{RoBE}	
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}	
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

33/65

Ú FAL

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xl PLM ~3B	$\begin{array}{c} \text{xxl PLM} \\ \sim 11B \end{array}$
Lee et al. (2017)	e2e	67.2 _Ø	101		
Lee et al. (2018)	e2e	70.4 _{ELMo}	7/	K	
Lee et al. (2018)	c2f	73.0 _{ELMo}			
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}		
Joshi et al. (2020)	c2f	\leq	79.6 _{SpanB}		
Kirstain et al. (2021)	s2e		80.3 _{Longf}		
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}		
Dobrovolskii (2021)	WL		81.0 _{RoBE}		
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}		
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}

Model Zoo Multiple Languages

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xI PLM ~3B	$\begin{array}{c} \text{xxl PLM} \\ \sim 11B \end{array}$	NN calls
Lee et al. (2017)	e2e	67.2 _Ø	1.01			1
Lee et al. (2018)	e2e	70.4 _{ELMo}	21	K		1
Lee et al. (2018)	c2f	73.0 _{ELMo}				1
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}			1
Joshi et al. (2020)	c2f	Y	79.6 _{SpanB}			1
Kirstain et al. (2021)	s2e		80.3 _{Longf}			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}			1
Dobrovolskii (2021)	WL		81.0 _{RoBE}			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}			1
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}	$\mathcal{O}(n)$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Lang

Multiple Languages Unseen Languages

Thank You

seq2seq: CR through a seq2seq Transition-Based System

seq2seq: Coreference Resolution through a seq2seq Transition-Based System Bohnet et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages Thank You

seq2seq: CR through a seq2seq Transition-Based System

Input: Speaker-A I still have n't gone to that fresh	Input : Speaker-A [1 I] still have n't gone to [3 that
French restaurant by your house	fresh French restaurant by [2 your house]] Speaker-
Prediction: SHIFT: next sentence	A [1 I] 'm like dying to go there Speaker-B [1 You
Input : Speaker-A I_2 still have n't gone to that fresh] mean [3 the one right next to [2 the apartment]]
French restaurant by your house Speaker-A I_{17} 'm	Speaker-B yeah yeah
like dying to go there	Prediction : SHIFT: next sentence
Prediction:	
A $I_{17} \rightarrow I_2$	Figure 1: Example of one of our transition-based
B SHIFT: next sentence	coreference systems, the Link-Append system. The
Input : Speaker-A [1 I] still have n't gone to that	system processes a single sentence at a time, using an
fresh French restaurant by your house Speaker-A [1]	input encoding of the prior sentences annotated with
] 'm like dying to go there <i>Speaker-B</i> You mean the	coreference clusters, followed by the new sentence. As
one right next to the apartment	output, the system makes predictions that link mentions
Prediction:	in the new sentence to either previously created corefer-
A You \rightarrow [1	ence clusters (e.g., "You \rightarrow [1") or when a new cluster
B the apartment \rightarrow your house	is created, to previous mentions (e.g., "the apartment
C the one right next to the apartment \rightarrow that fresh	\rightarrow your house"). The system predicts "SHIFT" when
French restaurant by your house	processing of the sentence is complete. Note in the fig-
D SHIFT: next sentence	ure we use the word indices 2 and 17 to distinguish the
	two incidences of "I" in the text.

Figure 1 of "Coreference Resolution through a seq2seq Transition-Based System", Bohnet et al. (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Unseen Languages

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xI PLM ~3B	$\begin{array}{c} \text{xxl PLM} \\ \sim 11B \end{array}$	NN calls
Lee et al. (2017)	e2e	67.2 _Ø				1
Lee et al. (2018)	e2e	70.4 _{ELMo}		K		1
Lee et al. (2018)	c2f	73.0 _{ELMo}				1
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}			1
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}			1
Kirstain et al. (2021)	s2e		80.3 _{Longf}			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}		\sim	1
Dobrovolskii (2021)	WL		81.0 _{RoBE}			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}			1
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq	100		78.0 ^{dev} mT5	83.3 _{mT5}	$\mathcal{O}(n)$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

e Languages Unseen Languages

Thank You

CorefQA: Coreference Resolution as Querybased Span Prediction

Wu et al. (2020)

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages

Original Passage

In addition, *many people* were poisoned when toxic gas was released. They were poisoned and did not know how to protect *them*selves against the poison.

Our formulation

Q1: Who were poisoned when toxic gas was released?

A1: [*They, themselves*]

Q2: What was released when many people were poisoned?

A2: [the poison]

Q3: Who were poisoned and did not know how to protect themselves against the poison? A3: [many people, themselves] Q4: Whom did they not know how to protect against the poison? A4: [many people, They] Q5: They were poisoned and did not know how to protect themselves against what? A5: [toxic gas]

Figure 1: An illustration of the paradigm shift from coreference resolution to query-based span prediction. Spans with the same format represent coreferent mentions.

Figure 1 of "CorefQA: Coreference Resolution as Query-based Span Prediction", Wu et al. (2020)

Multiple Languages Unseen Languages Thank You

• Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda = 0.2$ and maximum length L = 10.

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple La

Multiple Languages

Unseen Languages Tha

Thank You

- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda = 0.2$ and maximum length L = 10.
- For a mention, we compute the antecedent score s_a(i|j) by
 constructing a context-query input for SpanBERT,

- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda = 0.2$ and maximum length L = 10.
- For a mention, we compute the antecedent score s_a(i|j) by
 constructing a context-query input for SpanBERT,
 - $^{\circ}$ using BIO encoding to represent the antecedent (and possibly several of them); an antecedent ε is represented using all O-s.

- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda = 0.2$ and maximum length L = 10.
- For a mention, we compute the antecedent score s_a(i|j) by

 constructing a context-query input for SpanBERT,
 using BIO encoding to represent the antecedent (and possibly several of them); an antecedent ε is represented using all O-s.
- To handle bidirectionality, the final antecedent score is computed as

$$s(i,j)=s_a(i|j)+s_a(j|i).$$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Unseen Languages

Thank You

Model Ont

Wu et al. (2020)

odel OntoNotes	English R	esults				-
Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xI PLM ~3B	$\begin{array}{c} \text{xxl PLM} \\ \sim 11B \end{array}$	NN calls
Lee et al. (2017)	e2e	67.2 _Ø				1
Lee et al. (2018)	e2e	70.4 _{ELMo}		K		1
Lee et al. (2018)	c2f	73.0 _{ELMo}				1
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}			1
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}			1
Kirstain et al. (2021)	s2e		80.3 _{Longf}			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}		\sim	1
Dobrovolskii (2021)	WL		81.0 _{RoBE}			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}			1
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq	16-5		78.0 ^{dev} mT5	83.3 _{mT5}	$\mathcal{O}(n)$

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

CorefQA

 83.1_{SpanB}^{+QA}

 79.9_{SpanB}^{+QA}

Unseen Languages Thank You 40/65

 $\mathcal{O}(n)$

Ľ.

CorPipe: Winning System of CRAC 22 and 23 Straka and Straková (2022), Straka (2023)

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

CorPipe: Winning System of CRAC 22 and 23

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

uages Unseen

Unseen Languages Thank You

ÚFÁ	L

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xl PLM ~3B	$\begin{array}{c} \text{xxl PLM} \\ \sim 11B \end{array}$	NN calls
Lee et al. (2017)	e2e	67.2 _Ø	100			1
Lee et al. (2018)	e2e	70.4 _{ELMo}	7/	K		1
Lee et al. (2018)	c2f	73.0 _{ELMo}				1
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}			1
Joshi et al. (2020)	c2f	\leq	79.6 _{SpanB}			1
Kirstain et al. (2021)	s2e		80.3 _{Longf}			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 _{Longf}			1
Dobrovolskii (2021)	WL		81.0 _{RoBE}			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}			1
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			78.0_{mT5}^{dev}	83.3 _{mT5}	$\mathcal{O}(n)$
Wu et al. (2020)	CorefQA	79.9_{SpanB}^{+QA}	83.1^{+QA}_{SpanB}			$\mathcal{O}(n)$
	CorPipe		80.7 _{T5}	82.0 _{FT5}	1	1

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

'A-

Paper	Model	Ø/ELMo/ base PLM	large PLM ~350M	xl PLM ~3B	xxl PLM ~11B	NN calls
Lee et al. (2017)	e2e	67.2 _Ø		X		1
Lee et al. (2018)	e2e	70.4 _{ELMo}		K		1
Lee et al. (2018)	c2f	73.0 _{ELMo}				1
Joshi et al. (2019)	c2f	73.9 _{BERT}	76.9 _{BERT}			1
Joshi et al. (2020)	c2f	\prec	79.6 _{SpanB}			1
Kirstain et al. (2021)	s2e		80.3 _{Longf}			1
Otmazgin et al. (2023)	LingMess/s2e	N/	81.4 _{Longf}		\sim	1
Dobrovolskii (2021)	WL		81.0 _{RoBE}			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 _{RoBE}			1
Liu et al. (2022)	ASP	76.6 _{T5}	79.3 _{T5}	82.2 _{FT5}	82.5 _{FT5}	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			78.0_{mT5}^{dev}	83.3 _{mT5}	$\mathcal{O}(n)$
Wu et al. (2020)	CorefQA	79.9_{SpanB}^{+QA}	83.1^{+QA}_{SpanB}			$\mathcal{O}(n)$
	CorPipe		80.7 _{T5}	82.0 _{FT5}	/	1
	CorPipe		77.2 _{mT5}	78.9 _{mT5}		1

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages

Thank You

Multiple Languages

Multiple Languages – 17 CorefUD Treebanks

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple L

Multiple Languages

Unseen Languages T

Thank You

Uniqueness of Mention Heads Across CorefUD

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple L

Multiple Languages

Unseen Languages

Thank You

Treebank	Unique mention heads
ca_ancora	99.19%
cs_pcedt	98.72%
cs_pdt	98.64%
de_parcorfull	99.73%
de_potsdamcc	97.43%
en_gum	98.74%
en_parcorfull	99.58%
es_ancora	99.22%
fr_democrat	97.99%
hu_korkor	99.22%
hu_szegedkoref	99.52%
lt_lcc	99.60%
no_bokmaalnarc	95.47%
no_nynorsknarc	95.39%
pl_pcc	95.16%
ru_rucor	99.97%
tr_itcc	99.42%

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Unseen Languages

Thank You

Treebank	Unique mention heads
pl_pcc	95.16%
no_nynorsknarc	95.39%
no_bokmaalnarc	95.47%
de_potsdamcc	97.43%
fr_democrat	97.99%
cs_pdt	98.64%
cs_pcedt	98.72%
en_gum	98.74%
ca_ancora	99.19%
es_ancora	99.22%
hu_korkor	99.22%
tr_itcc	99.42%
hu_szegedkoref	99.52%
en_parcorfull	99.58%
lt_lcc	99.60%
de_parcorfull	99.73%
ru_rucor	99.97%

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Model Zoo

Unseen Languages

Thank You

Treebank	Unique mention heads	Unique or double head
pl_pcc	95.16%	99.59%
no_nynorsknarc	95.39%	99.95%
no_bokmaalnarc	95.47%	99.95%
de_potsdamcc	97.43%	99.84%
fr_democrat	97.99%	99.96%
cs_pdt	98.64%	99.93%
cs_pcedt	98.72%	99.95%
en_gum	98.74%	99.98%
ca_ancora	99.19%	99.99%
es_ancora	99.22%	100.00%
hu_korkor	99.22%	100.00%
tr_itcc	99.42%	100.00%
hu_szegedkoref	99.52%	100.00%
en_parcorfull	99.58%	100.00%
lt_lcc	99.60%	99.97%
de_parcorfull	99.73%	100.00%
ru_rucor	99.97%	100.00%

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

es Unseen Languages

Thank You

Treebank	Unique mention heads	Unique or double head	Unique, double, triple
pl_pcc	95.16%	99.59%	99.96%
no_nynorsknarc	95.39%	99.95%	100.00%
no_bokmaalnarc	95.47%	99.95%	100.00%
de_potsdamcc	97.43%	99.84%	99.95%
fr_democrat	97.99%	99.96%	100.00%
cs_pdt	98.64%	99.93%	99.97%
cs_pcedt	98.72%	99.95%	100.00%
en_gum	98.74%	99.98%	100.00%
ca_ancora	99.19%	99.99%	100.00%
es_ancora	99.22%	100.00%	100.00%
hu_korkor	99.22%	100.00%	100.00%
tr_itcc	99.42%	100.00%	100.00%
hu_szegedkoref	99.52%	100.00%	100.00%
en_parcorfull	99.58%	100.00%	100.00%
lt_lcc	99.60%	99.97%	100.00%
de_parcorfull	99.73%	100.00%	100.00%
ru_rucor	99.97%	100.00%	100.00%

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

_anguages Unseen Languages

Thank You

Training on Multiple Treebanks

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple I

Multiple Languages

Unseen Languages

Thank You

Ú F_AL

Training on Multiple Treebanks

Training a single multilingual model improves performance of all treebanks
 OrPipe 23, mT5-large

Configuration	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu korko	hu szege	lt	no bookm	no nynor	pl	ru	tr
Single Multilingual Model	74.8	81.6	80.3	79.0	69.7	75.4	76.8	66.0	82.8	70.3	69.5	69.8	77.9	81.5	81.7	77.1	75.2	57.2
Per-Corpus Models	-3.7	-1.4	-0.5	-0.4	-7.7	-3.3	-1.6	-7.6	-1.5	-2.0	-9.1	-1.0	-3.0	-2.3	-2.9	-1.0	-2.0	-15.8
Joint Czech Model			-0.1	-0.3														
Joint German Model					-4.8	-3.9												
Joint English Model							-1.9	-4.5										
Joint Parcorfull Model					-4.4			-2.5										
Joint Hungarian Model											-5.9	-1.1						
Joint Norwegian Model															-1.8			
Zero-Shot Multilingual Models	-13.2	-4.8	-24.2	-16.0	-13.7	-10.6	-14.4	-13.8	-1.9	-5.4	-15.1	-15.0	-23.4	-14.3	-18.0	-17.5	-15.5	-0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5-run score.

Training a single multilingual model improves performance of all treebanks
 OrPipe 22, RemBERT

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
G) E	FFECT	OF SE	VERAL L	ANGU	AGE-SF	PECIFIC	BASE	PRETRA	AINED	MODE	ELS			
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al., 2	2021)	+1.3												
RobeCzech (Straka et al., 20)21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 202	20)						-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.	, 2020)									-0.2				
HuBERT (Nemeskey, 2020))										+3.6			
LitLatBERT (Ulčar and Rol	onik-Šil	konja, i	2021)									+2.7		
HerBERT (Mroczkowski et	al., 202	21)	,										+1.6	
RuBERT (Kuratov and Arkl	nipov, 2	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages Thank You

Training a single multilingual model improves performance of all treebanks
 OrPipe 22, XLM-R-large: slight reduction for the largest treebanks

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
G) E	FFECT	of Se	VERAL L	ANGU	AGE-SF	PECIFIC	BASE	PRETRA	AINED	MODE	ELS	_		
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al., 2	2021)	+1.3												
RobeCzech (Straka et al., 20)21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 202	20)						-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.,	, 2020)									-0.2				
HuBERT (Nemeskey, 2020))										+3.6			
LitLatBERT (Ulčar and Rob	onik-Šil	conja,	2021)									+2.7		
HerBERT (Mroczkowski et	al., 202	21)											+1.6	
RuBERT (Kuratov and Arkh	nipov, 2	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages Thank You

 Training a single base-sized multilingual model makes performance of larger treebanks worse

Multiple Languages

Unseen Languages Tha

• CorPipe 23 & 22: Surprisingly, the mixing ratios do not matter much

Configuration	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu korko	hu szege	lt	no bookm	no nynor	pl	ru	tr
MIX RATIO WEI	GHTS O	f Indiv	VIDUAL (Corpo	RA IN P	ERCENT	S											
Logarithmic Uniform Square Root Linear		8.1 5.9 8.4 8.7	10.0 5.9 14.0 24.4	9.4 5.9 11.7 17.0	1.0 5.9 1.4 0.2	3.2 5.9 2.4 0.7	6.6 5.9 5.6 3.9	1.0 5.9 1.4 0.2	8.3 5.9 8.8 9.6	7.4 5.9 6.9 5.9	2.6 5.9 2.0 0.5	5.8 5.9 4.6 2.6	3.4 5.9 2.5 0.8	7.2 5.9 6.5 5.3	6.9 5.9 6.0 4.5	8.6 5.9 9.5 11.3	6.2 5.9 5.1 3.2	4.2 5.9 3.1 1.2
B) AVERAGE OF	5 RUNS	S USING	G FOR EV	/ery R	UN THE	SINGLE	E EPOCH	н Асніе	VING T	не Ніс	HEST S	CORE AG	CROSS A	ALL COI	RPORA			4
Logarithmic w/o corpus id Uniform w/o corpus id Square Root w/o corpus id Linear w/o corpus id	74.8 -0.2 -0.6 -0.6 -0.2 +0.1 +0.3 +0.1	81.7 +0.0 -0.4 -0.7 -0.1 -0.2 +0.2 +0.0	79.9 +0.1 -1.1 -0.6 +0.8 +0.6 +1.1 +1.0	78.6 +0.2 -0.9 -0.5 +0.7 +0.6 +1.1 +1.0	71.5 -1.9 +0.1 +1.0 -2.5 +1.3 -0.7 -2.1	76.2 -0.3 -1.0 -1.6 -0.2 -2.1 -1.9 -2.5	76.6 -0.3 -0.8 -0.5 -0.1 -0.2 -0.2 -0.2	67.9 -0.9 -6.7 -0.6 -4.2 -0.7 +3.8 +1.3	82.8 -0.2 -0.4 -0.1 +0.2 +0.5 +0.2	70.4 -0.4 -0.2 -0.6 +0.0 +0.1 -0.1 -0.1	68.3 +0.0 +1.0 +0.3 +0.9 +0.0 -0.7 +0.4	69.4 -0.2 +0.1 -0.5 -0.4 -0.4 -0.1 -0.5	78.0 -0.2 -0.2 +0.2 -0.1 +0.3 +0.3 +0.5	81.4 +0.1 -0.1 +0.3 +0.2 -0.4 +0.4	81.5 -0.2 +0.2 -1.3 +0.0 +0.1 +0.3 +0.3	76.9 +0.3 -0.1 -0.5 +0.4 +0.1 +0.1 +0.4	74.6 +1.0 +0.5 +0.8 +1.5 +1.2 +1.6 +1.0	55.5 -0.3 +0.0 -3.0 +0.4 +1.1 +0.0 +0.8

Model Zoo Multiple Lar

Multiple Languages

Unseen Languages

Thank You

- Similar results on Arabic OntoNotes
 - $^{\circ}$ only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	Arabic & English	Arabic & Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	

- Similar results on Arabic OntoNotes
 - $^{\circ}\,$ only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	Arabic & English	Arabic & Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	

- Similar results on Arabic OntoNotes
 - $^{\circ}\,$ only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	Arabic & English	Arabic & Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	
	CorPipe, mT5-large	64.1	66.1	65.9

- Similar results on Arabic OntoNotes
 - $^{\circ}\,$ only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	Arabic & English	Arabic & Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	
	CorPipe, mT5-large	64.1	66.1	65.9
Bohnet et al. (2022)	seq2seq, mT5-xxl		68.7	

• Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	Chinese & English	Chinese & Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	

• Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	Chinese & English	Chinese & Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	
	CorPipe, mT5-large	70.3	71.6	70.2

• Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	Chinese & English	Chinese & Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	
	CorPipe, mT5-large	70.3	71.6	70.2
Bohnet et al. (2022)	seq2seq, mT5-xxl		74.3	

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple L

Multiple Languages

Unseen Languages

Thank You

55/65

Ú F∡L

Language-specific vs Multilingual PLMs

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple I

Multiple Languages

Unseen Languages

Thank You

• For same-sized PLMs & individual treebanks, the results are mixed.

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
G) E	FFECT	of Se	veral L	ANGU	AGE-SF	PECIFIC	BASE	PRETRA	AINED	MODE	ELS			
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al., 2	2021)	+1.3												
RobeCzech (Straka et al., 20)21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 202	20)						-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.,	. ,									-0.2				
HuBERT (Nemeskey, 2020))										+3.6			
LitLatBERT (Ulčar and Rob	onik-Šil	konja, 1	2021)									+2.7		
HerBERT (Mroczkowski et	al., 202	21)											+1.6	
RuBERT (Kuratov and Arkl	nipov, 2	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple Languages

Thank You

• For same-sized PLMs & multilingual training, the results are mostly worse.

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
G) E	EFFECT	OF SEV	VERAL L	ANGU	AGE-SF	PECIFIC	BASE	PRETRA	AINED	MODE	ELS	0		
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019	9) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	2021)	+1.3												
RobeCzech (Straka et al., 2	021)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 202	20)						-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.	., 2020)									-0.2				
HuBERT (Nemeskey, 2020)										+3.6			
LitLatBERT (Ulčar and Ro	bnik-Šil	konja, 2	2021)									+2.7		
HerBERT (Mroczkowski et			,										+1.6	
RuBERT (Kuratov and Ark		,												+0.2
XLM-R large individual	+4.0		+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0
(C) Effe	CT OF	Multil	INGUA	L DATA	A AND T	THE PR	ETRAI	NED M	[ODEL			1	2.1
XLM-R base multilingual	73.3	75.8	76.0				73.1		78.4		65.2	78.0	72.1	71.7
XLM-R base individual	-4.6	-4.4	-0.3	-1.1	-7.8	-12.1	-1.9	-12.2	-2.8	-3.0	-3.8	-4.6	-2.3	-6.1

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple I

Multiple Languages Unseen Languages

Thank You

• Base-sized language-specific PLMs worse than large-sizes multilingual.

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
G) E	FFECT	OF SE	veral L	ANGU	AGE-SF	PECIFIC	BASE	PRETRA	AINED	Mode	ELS	6		
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al., 2	2021)	+1.3												
RobeCzech (Straka et al., 20	021)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 202	20)						-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.										-0.2				
HuBERT (Nemeskey, 2020))										+3.6			
LitLatBERT (Ulčar and Rot	onik-Ši	konja, 1	2021)									+2.7		
HerBERT (Mroczkowski et	al., 202	21)											+1.6	
RuBERT (Kuratov and Arkl	hipov, 2	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6		+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7		+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

anguages Unseen Languages

Thank You

Zero-shot Evaluation of Unseen Language

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

Unseen Languages

Thank You

- Ú_F^{AL}
- CorPipe 22 unseen language performance comparable to the shared task baseline (c2f + mBERT)

I	Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
		F)	Zero-:	SHOT E	ALUA	TION O	F A MU	ULTILIN	IGUAL	Mode	L				
1	Multilingual XLM-R base	73.3	75.8	76.0	75.0	73.4	74.1	73.1	75.4	78.4	66.1	65.2	78.0	72.1	71.7
7	Zero-shot XLM-R base	-17.1	-11.1	-28.6	-23.8	-13.3	-13.8	-19.8	-18.5	-6.8	-7.6	-16.1	-23.8	-24.6	-15.1
I	Multilingual RemBERT	+1.9	+1.6	+3.3	+3.3	+2.9	+2.4	+2.4	-6.1	+2.7	+2.0	+4.0	-1.2	+3.7	+2.9
7	Zero-shot RemBERT	-12.5	-6.7	-23.7	-20.6	-11.1	-7.5	-15.6	-9.8	-2.8	-8.3	-10.5	-20.0	-18.3	-7.2
	Multilingual RemBERT Zero-shot RemBERT	75.3 -14.4	77.4 -8.3	79.3 -27.0	78.3 -23.8	76.3 -14.0		75.5 -18.0		81.1 -5.6	68.1 -10.4	69.2 -14.5			74.6 -10.2
	Model	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
	Baseline to RemBERT	-11,0	-13,3	-9,1	-10,7	-20,9	-19,1	-9,1	-12,0	-15,5	-13,6	-10,5	-8,1	-12,2	-11,9

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Model Zoo Multiple

Multiple Languages

Unseen Languages

Thank You

 CorPipe 23 unseen language performance slightly better than the shared task baseline (c2f + mBERT)

Configuration	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu korko	hu szege	lt	no bookm	no nynor	pl	ru	tr
Single Multilingual Model	74.8	81.6	80.3	79.0	69.7	75.4	76.8	66.0	82.8	70.3	69.5	69.8	77.9	81.5	81.7	77.1	75.2	57.2
Per-Corpus Models	-3.7	-1.4	-0.5	-0.4	-7.7	-3.3	-1.6	-7.6	-1.5	-2.0	-9.1	-1.0	-3.0	-2.3	-2.9	-1.0	-2.0	-15.8
Joint Czech Model			-0.1	-0.3														
Joint German Model					-4.8	-3.9												
Joint English Model							-1.9	-4.5										
Joint Parcorfull Model					-4.4			-2.5										
Joint Hungarian Model											-5.9	-1.1						
Joint Norwegian Model															-1.8			
Zero-Shot Multilingual Models	-13.2	-4.8	-24.2	-16.0	-13.7	-10.6	-14.4	-13.8	-1.9	-5.4	-15.1	-15.0	-23.4	-14.3	-18.0	-17.5	-15.5	-0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5-run score.

Model	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu korko	hu szege	lt	no bookm	no nynor	pl	ru	tr
Baseline to Multilingual	-17,8	-16,3	-12,6	-13,8	-25,6	-18,3	-13,7	-30,8	-15,9	-15,0	-14,2	-6,2	-11,8	-12,5	-41,0	-12,0	-9,4	-34,5

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Thank You

Unseen Languages

- OntoNotes demonstrates similar behavior, with largest decrease on unseen Chinese

Model	English	Arabic	Chinese
CorPipe, mT5-large, individual treebanks	77.2	64.1	70.3

- Ú F_AL
- OntoNotes demonstrates similar behavior, with largest decrease on unseen Chinese

Model	English	Arabic	Chinese
CorPipe, mT5-large, individual treebanks	77.2	64.1	70.3
CorPipe, mT5-large, unseen language	61.7	54.1	48.3

Unseen Language Example on en_gum, Byron Biography

Ú F_AL

Education and early loves

Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]

Placed under the care of a **Dr**. Bailey, **he** was encouraged to exercise in **moderation** but not restrain **himself** from "violent" **bouts** in an **attempt** to overcompensate for **his** deformed **foot**.

His mother interfered with his studies, often withdrawing him from school, with the result that he lacked discipline and his classical studies were neglected.

In 1801, he was sent to Harrow, where he remained until July 1805. [6]

An undistinguished **student** and an unskilled **cricketer**, **he** did represent the **school** during the very first **Eton** v **Harrow** cricket **match** at **Lord** 's in 1805. [19]

His lack of moderation was not restricted to physical exercise.

Byron fell in **love** with **Mary** Chaworth, **whom he** met while at **school**, [6] and **she** was the **reason he** refused to return to **Harrow** in **September** 1803.

His mother wrote, "He has no **indisposition** that I know of but **love**, desperate **love**, the worst of all **maladies** in **my opinion**. In short, the **boy** is distractedly in **love** with **Miss** Chaworth." [6]

In Byron 's later memoirs, "Mary Chaworth is portrayed as the first object of his adult sexual feelings." [20]

Byron finally returned in **January** 1804, [6] to a more settled **period** which saw the **formation** of a **circle** of emotional **involvements** with other Harrow **boys**, which **he** recalled with great **vividness**: "**My** school **friendships** were with **me passions** (for **I** was always violent)." [21]

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023 Model Zoo Multiple Languages Unseen Languages Thank You 64/65

Thank You

Questions?

Model Zoo

CRAC 2023, Coreference Resolution Systems, 7 Nov 2023

Multiple Languages

inguages Unse

Unseen Languages

Thank You