Recent Computational Approaches to Coreference Resolution

Milan Straka Institute of Formal and Applied Linguistics Charles University

Charles University in Prague

Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Coreference Resolution - Byron Biography from en_gum
Education and early loves
Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]
Placed under the care of a Dr. Bailey, he was encouraged to exercise in moderation but not restrain himself from "violent" bouts in an attempt to overcompensate for his deformed foot.
His mother interfered with his studies, often withdrawing him from school, with the result that he lacked discipline and his classical studies were neglected.
In 1801, he was sent to Harrow, where he remained until July 1805. [6]
An undistinguished student and an unskilled cricketer, he did represent the school during the very first Eton \checkmark Harrow cricket match at Lord 's in 1805. [19]
His lack of moderation was not restricted to physical exercise.
Byron fell in love with Mary Chaworth, whom he met while at school, [6] and she was the reason he refused to return to Harrow in September 1803.
His mother wrote, " He has no indisposition that I know of but love, desperate love, the worst of all maladies in my opinion. In short, the boy is distractedly in love with Miss Chaworth." [6]
In Byron 's later memoirs, " Mary Chaworth is portrayed as the first object of his adult sexual feelings." [20] Byron finally returned in January 1804, [6] to a more settled period which saw the formation of a circle of emotional involvements with other Harrow boys, which he recalled with great vividness: "My school friendships were with me passions (for I was always violent)." [21]

Model Zoo

e2e: End-to-end Neural Coreference Resolution

Lee et al. (2017)

- Every possible span considers all preceding spans and ε as antecedents.

- Every possible span considers all preceding spans and ε as antecedents.
- For a span $i=(\operatorname{start}(i), \operatorname{end}(i))$, the score of span j being an antecedent of span i is computed as

$$
s(i, j)=\left\{\begin{array}{l}
0 \text { if } j=\varepsilon \\
s_{m}(i)+s_{m}(j)+s_{a}(i, j) \text { otherwise }
\end{array}\right.
$$

- Span is represented as

$$
\boldsymbol{g}_{i}=\left[\boldsymbol{x}_{\text {start }(i)}, \boldsymbol{x}_{\mathrm{end}(i)}, \text { soft head } \sum_{t=\operatorname{start}(i)}^{\operatorname{end}(i)} \alpha_{t} \boldsymbol{x}_{t}, \text { span features } \varphi(i)\right] .
$$

- Span is represented as

$$
\boldsymbol{g}_{i}=\left[\boldsymbol{x}_{\text {start }(i)}, \boldsymbol{x}_{\mathrm{end}(i)}, \text { soft head } \sum_{t=\operatorname{start}(i)}^{\operatorname{end}(i)} \alpha_{t} \boldsymbol{x}_{t}, \text { span features } \varphi(i)\right] .
$$

- Mention score $s_{m}(i)=f_{m}(\boldsymbol{g}(i))$,

- Span is represented as

$$
\boldsymbol{g}_{i}=\left[\boldsymbol{x}_{\text {start }(i)}, \boldsymbol{x}_{\mathrm{end}(i)}, \text { soft head } \sum_{t=\operatorname{start}(i)}^{\operatorname{end}(i)} \alpha_{t} \boldsymbol{x}_{t}, \text { span features } \varphi(i)\right] .
$$

- Mention score $s_{m}(i)=f_{m}(\boldsymbol{g}(i))$,
- antecedent score $s_{a}(i, j)=f_{a}\left(\left[\boldsymbol{g}_{i}, \boldsymbol{g}_{j}, \boldsymbol{g}_{i} \odot \boldsymbol{g}_{j}, \varphi(i, j)\right]\right)$.

e2e: End-to-end Neural Coreference Resolution

- However, there are up to $\mathcal{O}\left(n^{4}\right)$ span-span combinations.

- However, there are up to $\mathcal{O}\left(n^{4}\right)$ span-span combinations.
- consider spans to a maximum length $L=10$;

- However, there are up to $\mathcal{O}\left(n^{4}\right)$ span-span combinations.
- consider spans to a maximum length $L=10$;
- keep only λn spans for $\lambda=0.4$ with maximum $s_{m}(i)$;

- However, there are up to $\mathcal{O}\left(n^{4}\right)$ span-span combinations.
- consider spans to a maximum length $L=10$;
- keep only λn spans for $\lambda=0.4$ with maximum $s_{m}(i)$;
- for each span, consider up to $K=250$ nearest mentions.

- However, there are up to $\mathcal{O}\left(n^{4}\right)$ span-span combinations.
- consider spans to a maximum length $L=10$;
- keep only λn spans for $\lambda=0.4$ with maximum $s_{m}(i)$;
- for each span, consider up to $K=250$ nearest mentions.

Model Results

Model OntoNotes English Results

Paper	Model
Lee et al. (2017)	e2e
base PLM	

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M O /$ base PLM
Lee et al. (2017)	e 2 e	$67.2 \varnothing$
Lee et al. (2018)	e 2 e	70.4 ELMo

c2f: Higher-order Coreference Resolution with Coarse-to-fine Inference

Lee et al. (2018)

- Scoring function is extended by assing $s_{c}(i, j)$:

$$
s(i, j)=\left\{\begin{array}{l}
0 \text { if } j=\varepsilon \\
s_{m}(i)+s_{m}(j)+s_{c}(i, j)+s_{a}(i, j) \text { otherwise }
\end{array}\right.
$$

- Scoring function is extended by assing $s_{c}(i, j)$:

$$
s(i, j)=\left\{\begin{array}{l}
0 \text { if } j=\varepsilon \\
s_{m}(i)+s_{m}(j)+s_{c}(i, j)+s_{a}(i, j) \text { otherwise }
\end{array}\right.
$$

where

$$
s_{c}(i, j)=\boldsymbol{g}_{i}^{T} \boldsymbol{W}_{c} \boldsymbol{g}_{j} \approx\left(\boldsymbol{W}_{q} \boldsymbol{g}_{i}\right)^{T}\left(\boldsymbol{W}_{k} \boldsymbol{g}_{j}\right)
$$

- Scoring function is extended by assing $s_{c}(i, j)$:

$$
s(i, j)=\left\{\begin{array}{l}
0 \text { if } j=\varepsilon \\
s_{m}(i)+s_{m}(j)+s_{c}(i, j)+s_{a}(i, j) \text { otherwise }
\end{array}\right.
$$

where

$$
s_{c}(i, j)=\boldsymbol{g}_{i}^{T} \boldsymbol{W}_{c} \boldsymbol{g}_{j} \approx\left(\boldsymbol{W}_{q} \boldsymbol{g}_{i}\right)^{T}\left(\boldsymbol{W}_{k} \boldsymbol{g}_{j}\right) .
$$

- Two-step pruning:

1. keep λn spans with highest $s_{m}(i)$ and maximum length $L=30$,

- Scoring function is extended by assing $s_{c}(i, j)$:

$$
s(i, j)=\left\{\begin{array}{l}
0 \text { if } j=\varepsilon \\
s_{m}(i)+s_{m}(j)+s_{c}(i, j)+s_{a}(i, j) \text { otherwise }
\end{array}\right.
$$

where

$$
s_{c}(i, j)=\boldsymbol{g}_{i}^{T} \boldsymbol{W}_{c} \boldsymbol{g}_{j} \approx\left(\boldsymbol{W}_{q} \boldsymbol{g}_{i}\right)^{T}\left(\boldsymbol{W}_{k} \boldsymbol{g}_{j}\right) .
$$

- Two-step pruning:

1. keep λn spans with highest $s_{m}(i)$ and maximum length $L=30$,
2. keep $K=50$ top antecedents according to $s_{m}(i), s_{m}(j), s_{c}(i, j)$.

Model OntoNotes English Results

Paper	Model	$\varnothing /$ ELMo/ base PLM
Lee et al. (2017)	e2e	$67.2 \varnothing$
Lee et al. (2018)	e2e	70.4 ELMo
Lee et al. (2018)	c2f	$73.0^{\text {ELMo }}$

Model OntoNotes English Results

Paper	Model	$\varnothing /$ ELMo/ base PLM $67.2 \varnothing$
Lee et al. (2017)	e2e	70.4 ELMo
Lee et al. (2018)	e2e	$73.0_{\text {ELMo }}$
Lee et al. (2018)	c2f	$73.9_{\text {BERT }}$
Joshi et al. (2019)	c2f	

Model OntoNotes English Results

Paper	Model	$\varnothing /$ ELMo base PLM	large PLM $\sim 350 M$
Lee et al. (2017)	e 2 e	67.2^{\varnothing}	
Lee et al. (2018)	e 2 e	$70.4_{\text {ELMo }}$	
Lee et al. (2018)	c 2 f	$73.0_{\text {ELMo }}$	
Joshi et al. (2019)	c2f	$73.9_{\text {BERT }}$	$76.9_{\text {BERT }}$

SpanBERT: Improving Pre-training by Representing and Predicting Spans
 Joshi et al. (2020)

$$
\begin{aligned}
\mathcal{L}(\text { football }) & =\mathcal{L}_{\mathrm{MLM}}(\text { football })+\mathcal{L}_{\mathrm{SBO}}(\text { football }) \\
& =-\log P\left(\text { football } \mid \mathbf{x}_{7}\right)-\log P\left(\text { football } \mid \mathbf{x}_{4}, \mathbf{x}_{9}, \mathbf{p}_{3}\right)
\end{aligned}
$$

Figure 1: An illustration of SpanBERT training. The span an American football game is masked. The span boundary objective (SBO) uses the output representations of the boundary tokens, \mathbf{x}_{4} and \mathbf{x}_{9} (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, football (in pink), which as marked by the position embedding \mathbf{p}_{3}, is the third token from x_{4}.

Figure 1 of "SpanBERT: Improving Pre-training by Representing and Predicting Spans", Joshi et al. (2020)

$$
\begin{aligned}
\mathcal{L}(\text { football }) & =\mathcal{L}_{\mathrm{MLM}}(\text { football })+\mathcal{L}_{\mathrm{SBO}}(\text { football }) \\
& =-\log P\left(\text { football } \mid \mathbf{x}_{7}\right)-\log P\left(\text { football } \mid \mathbf{x}_{4}, \mathbf{x}_{9}, \mathbf{p}_{3}\right)
\end{aligned}
$$

Figure 1: An illustration of SpanBERT training. The span an American football game is masked. The span boundary objective (SBO) uses the output representations of the boundary tokens, \mathbf{x}_{4} and \mathbf{x}_{9} (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, football (in pink), which as marked by the position embedding \mathbf{p}_{3}, is the third token from x_{4}.

Figure 1 of "SpanBERT: Improving Pre-training by Representing and Predicting Spans", Joshi et al. (2020)

- MLM, Span Boundary Objective, no NSP (single segment like RoBERTa)

Model OntoNotes English Results

Paper	Model	Ø/ELMo/ base PLM
large PLM		
Lee et al. (2017)	e 2 e	67.2^{\varnothing}

s2e: Coreference Resolution without Span Representations

Kirstain et al. (2021)

- A span is represented purely using its starting and ending token

$$
\boldsymbol{m}^{s}=f_{m}^{s}(\boldsymbol{x}), \quad \boldsymbol{m}^{e}=f_{m}^{e}(\boldsymbol{x})
$$

- A span is represented purely using its starting and ending token

$$
\boldsymbol{m}^{s}=f_{m}^{s}(\boldsymbol{x}), \quad \boldsymbol{m}^{e}=f_{m}^{e}(\boldsymbol{x})
$$

- Mention score for a mention from token i to token j is then

$$
s_{m}(i, j)=\boldsymbol{v}_{s}^{T} \boldsymbol{m}_{i}^{s}+\boldsymbol{v}_{e}^{T} \boldsymbol{m}_{j}^{e}+\left(\boldsymbol{m}_{i}^{s}\right)^{T} \boldsymbol{W}_{m} \boldsymbol{m}_{j}^{e}
$$

- A span is represented purely using its starting and ending token

$$
\boldsymbol{m}^{s}=f_{m}^{s}(\boldsymbol{x}), \quad \boldsymbol{m}^{e}=f_{m}^{e}(\boldsymbol{x})
$$

- Mention score for a mention from token i to token j is then

$$
s_{m}(i, j)=\boldsymbol{v}_{s}^{T} \boldsymbol{m}_{i}^{s}+\boldsymbol{v}_{e}^{T} \boldsymbol{m}_{j}^{e}+\left(\boldsymbol{m}_{i}^{s}\right)^{T} \boldsymbol{W}_{m} \boldsymbol{m}_{j}^{e} .
$$

- Mention score is computed for all spans, and only λn are kept.
- Maximum span length L is used for its inductive bias.
- A span is represented purely using its starting and ending token

$$
\boldsymbol{m}^{s}=f_{m}^{s}(\boldsymbol{x}), \quad \boldsymbol{m}^{e}=f_{m}^{e}(\boldsymbol{x})
$$

- Mention score for a mention from token i to token j is then

$$
s_{m}(i, j)=\boldsymbol{v}_{s}^{T} \boldsymbol{m}_{i}^{s}+\boldsymbol{v}_{e}^{T} \boldsymbol{m}_{j}^{e}+\left(\boldsymbol{m}_{i}^{s}\right)^{T} \boldsymbol{W}_{m} \boldsymbol{m}_{j}^{e}
$$

- Mention score is computed for all spans, and only λn are kept.
- Maximum span length L is used for its inductive bias.
- Antecedent score is $s_{a}\left(i_{1}, j_{1}, i_{2}, j_{2}\right)=\left[\boldsymbol{a}_{i_{1}}^{s}, \boldsymbol{a}_{j_{1}}^{e}\right]^{T} \boldsymbol{W}_{a}\left[\boldsymbol{a}_{i_{2}}^{s}, \boldsymbol{a}_{j_{2}}^{e}\right]$ for

$$
\boldsymbol{a}^{s}=f_{a}^{s}(\boldsymbol{x}), \quad \boldsymbol{a}^{e}=f_{a}^{e}(\boldsymbol{x})
$$

Model OntoNotes English Results

Paper	Model	Ø/ELMo/ base PLM	large PLM $\sim 350 M$
Lee et al. (2017)	e2e	67.2^{\varnothing}	
Lee et al. (2018)	e2e	$70.4_{\text {ELMo }}$	
Lee et al. (2018)	c2f	$73.0_{\text {ELMo }}$	
Joshi et al. (2019)	c2f	$73.9_{\text {BERT }}$	$76.9_{\text {BERT }}$
Joshi et al. (2020)	c2f		$79.6_{\text {SpanB }}$
Kirstain et al. (2021)	s2e		$80.3_{\text {Longf }}$

LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution

Otmazgin et al. (2023)

Manual classification of links into 6 classes:

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {PRoN-Ent }}$ ("Lionel Messi", "He").
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert
Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns, - ENT-PRON: pronoun and non-pronoun,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) $f_{a}($ "Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other, - OTHER.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }(" L i o n e l ~ M e s s i ", ~ " H e ") . ~}$
Figure 1 of "LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution", Otmazgin et al. (2023)

LingMess: Linguistically Informed Multi Expert Scorers for CR $\dot{U}_{\overrightarrow{F A}}$
Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,
- OTHER.

Create seven antecedent scores - a generic one, and one for every link class.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}(" H e "), \quad$ and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }}$ ("Lionel Messi", "He").
Figure 1 of "LingMess: Linguistically Informed Multi Expert
Scorers for Coreference Resolution", Otmazgin et al. (2023)

LingMess: Linguistically Informed Multi Expert Scorers for CR $\dot{U}_{\vec{F} \bar{A} L}$
Manual classification of links into 6 classes:

- PRON-PRON-C: compatible pronouns,
- PRON-PRON-NC: non-compatible pronouns,
- ENT-PRON: pronoun and non-pronoun,
- MATCH: exact forms,
- CONTAINS: one form containing other,
- OTHER.

Create seven antecedent scores - a generic one, and one for every link class.
Final antecedent score is a sum of the generic antecedent score and the score of the corresponding class-specific score.

Figure 1: Architecture of our multi expert model. Given two spans "Lionel Messi" and "He", we sum four scores: individual mention scores (black), $\quad f_{m}$ ("Lionel Messi"), $\quad f_{m}$ ("He"), and pairwise scores, shared antecedent score (white) f_{a} ("Lionel Messi", "He") and the relevant "expert" score (blue) $f_{a}^{\text {Pron-Ent }}$ ("Lionel Messi", "He").
Figure 1 of "LingMess: Linguistically Informed Multi Expert

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o$ base PLM	$\begin{aligned} & \text { large PLM } \\ & 350 \mathrm{M} \end{aligned}$
Lee et al. (2017)	e2e	$67.2 \varnothing$	
Lee et al. (2018)	e2e	70.4 ELMo	
Lee et al. (2018)	c2f	73.0ELMo	
Joshi et al. (2019)	c2f	73.9 BERT	$76.9_{\text {BERT }}$
Joshi et al. (2020)	c2f		79.6 SpanB
Kirstain et al. (2021)	s2e		80.3 Longf
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf

WL: Word-Level Coreference Resolution Dobrovolskii (2021)

- Represent each span by its head.
- Represent each span by its head.
- Syntactic head is used by the author.
- Represent each span by its head.
- Syntactic head is used by the author.
- We start by computing token representation

$$
\boldsymbol{t}=\boldsymbol{W}_{A} \boldsymbol{x} .
$$

- Represent each span by its head.
- Syntactic head is used by the author.
- We start by computing token representation

$$
\boldsymbol{t}=\boldsymbol{W}_{A} \boldsymbol{x}
$$

- We then compute bilinear (coarse) antecedent score

$$
s_{c}(i, j)=\boldsymbol{t}_{i}^{T} \boldsymbol{W}_{C} \boldsymbol{t}_{j}
$$

- Represent each span by its head.
- Syntactic head is used by the author.
- We start by computing token representation

$$
\boldsymbol{t}=\boldsymbol{W}_{A} \boldsymbol{x}
$$

- We then compute bilinear (coarse) antecedent score

$$
s_{c}(i, j)=\boldsymbol{t}_{i}^{T} \boldsymbol{W}_{C} \boldsymbol{t}_{j}
$$

and keep the k most likely antecedent for every mention.

- Represent each span by its head.
- Syntactic head is used by the author.
- We start by computing token representation

$$
\boldsymbol{t}=\boldsymbol{W}_{A} \boldsymbol{x}
$$

- We then compute bilinear (coarse) antecedent score

$$
s_{c}(i, j)=\boldsymbol{t}_{i}^{T} \boldsymbol{W}_{C} \boldsymbol{t}_{j}
$$

and keep the k most likely antecedent for every mention.

- Finally, we compute $s(i, j)=s_{c}(i, j)+s_{a}(i, j)$ for $s_{a}(i, j)=f_{a}\left(\left[\boldsymbol{t}_{i}, \boldsymbol{t}_{j}, \boldsymbol{t}_{i} \odot \boldsymbol{t}_{j}, \varphi(i, j)\right]\right) ;$
- Represent each span by its head.
- Syntactic head is used by the author.
- We start by computing token representation

$$
\boldsymbol{t}=\boldsymbol{W}_{A} \boldsymbol{x}
$$

- We then compute bilinear (coarse) antecedent score

$$
s_{c}(i, j)=\boldsymbol{t}_{i}^{T} \boldsymbol{W}_{C} \boldsymbol{t}_{j}
$$

and keep the k most likely antecedent for every mention.

- Finally, we compute $s(i, j)=s_{c}(i, j)+s_{a}(i, j)$ for $s_{a}(i, j)=f_{a}\left(\left[\boldsymbol{t}_{i}, \boldsymbol{t}_{j}, \boldsymbol{t}_{i} \odot \boldsymbol{t}_{j}, \varphi(i, j)\right]\right) ; s_{a}(i, j)<0$ implies no link.
- Heads are extended into spans by a span extraction module:

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n/a	n/a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; $\mathbf{S A}$ is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir
Dobrovolski (2021)

- Heads are extended into spans by a span extraction module:
- the head token representation is concatenated to all token representations,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n / a	n / a	79.74
+RoBERTa	n / a	n / a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; $\mathbf{S A}$ is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

- Heads are extended into spans by a span extraction module:
O the head token representation is concatenated to all token representations,
- passed through a feed forward network,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n / a	n / a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; $\mathbf{S A}$ is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

- Heads are extended into spans by a span extraction module:
- the head token representation is concatenated to all token representations,
- passed through a feed forward network,
- passed through a 1D convolution with kernel size 3,

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n / a	n / a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; $\mathbf{S A}$ is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

- Heads are extended into spans by a span extraction module:
- the head token representation is concatenated to all token representations,
- passed through a feed forward network,
- passed through a 1D convolution with kernel size 3,
- the resulting 2 outputs for every token are logits of that token being the starting or ending token of the span.

	WL F1	SA	SL F1
wl + RoBERTa	83.11	97.16	80.72
-BCE	83.05	97.11	80.60
wl + SpanBERT	82.52	97.13	80.14
-BCE	82.32	97.10	79.99
wl + BERT	77.55	96.20	74.80
wl + Longformer	82.98	97.14	80.56
JOSHI-REPLICA	n/a	n/a	79.74
+RoBERTa	n / a	n / a	78.65

Table 2: Model comparisons on the OntoNotes 5.0 development dataset (best out of 20 epochs). WL F1 means word-level CoNLL-2012 F1 score, i.e. the coreference metric on the word-level dataset; $\mathbf{S A}$ is the span extraction accuracy or the percentage of correctly predicted spans; SL F1 is the span-level CoNLL-2012 F1 score, the basic coreference metric.

Table 2 of "Word-Level Coreference Resolution", Vladimir Dobrovolski (2021)

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o$ base PLM	$\begin{aligned} & \text { large PLM } \\ & \sim 350 \mathrm{M} \end{aligned}$
Lee et al. (2017)	e2e	$67.2 \varnothing$	
Lee et al. (2018)	e2e	70.4ELMo	
Lee et al. (2018)	c2f	73.0 ELMo	
Joshi et al. (2019)	c2f	73.9BERT	76.9 BERT
Joshi et al. (2020)	c2f		$79.6{ }_{\text {SpanB }}$
Kirstain et al. (2021)	s2e		80.3 Longf
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf
Dobrovolskii (2021)	WL		81.0 RoBE

CAW: Conjunction-Aware Word-level Coreference Resolution

D'Oosterlinck et al. (2023)

Word-Level coref has routine errors on conjoined entities.

Error type 1: WL-coref does not link Tom and Mary to They

Tom and Mary are playing. He is 7 years old. They are siblings.

Error type 2: WL-coref links They to Tom, instead of Tom and Mary
Tom and Mary are talking. They are talking.

Figure 1: We identify two types of failure cases for WL-coref when processing conjoined mentions. Our simple solution, CAW-coref, addresses these errors.
Figure 1 of "CAW-coref: Conjunction-Aware Word-level Coreference Resolution", D'Oosterlinck et al. (2023)

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	large PLM $\sim 350 \mathrm{M}$
Lee et al. (2017)	e2e	$67.2 \varnothing$	
Lee et al. (2018)	e2e	$70.4{ }^{\text {ELMo }}$	
Lee et al. (2018)	c2f	73.0 ELMo	
Joshi et al. (2019)	c2f	73.9 BERT	$76.9{ }^{\text {BERT }}$
Joshi et al. (2020)	c2f		79.6 SpanB
Kirstain et al. (2021)	s2e		80.3 Longf
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf
Dobrovolskii (2021)	WL		81.0 RoBE
D'Oosterlinck et al. (2023)	CAW/WL		81.6RobE

ASP: Autoregressive Structured Prediction with Language Models

Liu et al. (2022)

INPUT US President Joe Biden took office in 2021. Previously, he was the senator of Delaware.

Figure 1: Illustration of the target outputs of our framework on coreference resolution (COREF) and end-to-end relation extraction (ERE). The lower part illustrates the decoding process of our model. The actions \boldsymbol{y}_{i} are color-coded as $]$, [${ }^{*}$ and copy. The structure random variables z_{i} are presented along with coreference links or relation links. We present words in the copy cells merely as an illustration.

Figure 1 of "Autoregressive Structured Prediction with Language Models", Liu et al. (2022)

ASP: Autoregressive Structured Prediction with LMs

At each step, the output consists of a triple:

ASP: Autoregressive Structured Prediction with LMs

At each step, the output consists of a triple:

- an action [*, copy,];

ASP: Autoregressive Structured Prediction with LMs

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;

ASP: Autoregressive Structured Prediction with LMs

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;
- if the action is], a pointer to an antecedent represented by its], or to ε.

At each step, the output consists of a triple:

- an action [*, copy,];
- if the action is], a pointer to some previous [*;
- if the action is], a pointer to an antecedent represented by its], or to ε.

The local probabilities are computed using a softmax over a dynamic set with a parametrized scoring function.

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o$ base PLM large PLM $\sim 350 \mathrm{M}$	
Lee et al. (2017)	e2e	(2018	
Lee et al. (2018)	e2e	$70.4_{\text {ELMo }}$	
Lee et al. (2018)	c2f	$73.0_{\text {ELMo }}$	
Joshi et al. (2019)	c2f	$73.9_{\text {BERT }}$	$76.9_{\text {BERT }}$
Joshi et al. (2020)	c2f		$79.6_{\text {SpanB }}$
Kirstain et al. (2021)	s2e		$80.3_{\text {Longf }}$
Otmazgin et al. (2023)	LingMess/s2e		$81.4_{\text {Longf }}$
Dobrovolskii (2021)	WL		$81.0_{\text {RoBE }}$
D'Oosterlinck et al. (2023)	CAW/WL		$8_{\text {RoBE }}$
Liu et al. (2022)	ASP	$76.6_{\mathrm{T} 5}$	$79.3_{\mathrm{T} 5}$

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\underset{\sim}{\text { large PLM }}$	$x \mid \underset{\sim 3 B}{\text { PLM }}$
Lee et al. (2017)	e2e	$67.2 \varnothing$		
Lee et al. (2018)	e2e	$70.4{ }^{\text {ELMo }}$		
Lee et al. (2018)	c2f	73.0 ELMo		
Joshi et al. (2019)	c2f	73.9 BERT	76.9 BERT	
Joshi et al. (2020)	c2f		79.6 SpanB	
Kirstain et al. (2021)	s2e		80.3 Longf	
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf	
Dobrovolskii (2021)	WL		81.0 RoBE	
D'Oosterlinck et al. (2023)	CAW/WL		81.6 RoBE	
Liu et al. (2022)	ASP	${ }^{76.6}$ T5	${ }^{79.3}$ T5	82.2FT5

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\begin{gathered} \text { large PLM } \\ -350 \mathrm{M} \end{gathered}$	$x \mid \underset{\sim}{\operatorname{PLB}}$	$\begin{gathered} \text { xxI PLM } \\ \sim 11 \mathrm{~B} \end{gathered}$
Lee et al. (2017)	e2e	$67.2 \varnothing$			
Lee et al. (2018)	e2e	70.4ELMo			
Lee et al. (2018)	c2f	73.0 ELMo			
Joshi et al. (2019)	c2f	73.9 BERT	76.9 BERT		
Joshi et al. (2020)	c2f		79.6 SpanB		
Kirstain et al. (2021)	s2e		80.3 Longf		
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf		
Dobrovolskii (2021)	WL		81.0 RoBE		
D'Oosterlinck et al. (2023)	CAW/WL		81.6 RobBE		
Liu et al. (2022)	ASP	${ }^{76.6}{ }_{\text {T5 }}$	79.3 T5	82.2 FT 5	$82.5{ }^{\text {FT5 }}$

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\begin{aligned} & \text { large PLM } \\ & -350 \mathrm{M} \end{aligned}$	$\underset{\sim 3 B}{x I}$	$\begin{gathered} \text { xxI PLM } \\ \sim 11 B \end{gathered}$	NN calls
Lee et al. (2017)	e2e	67.2 Ø				1
Lee et al. (2018)	e2e	70.4 ELMo				1
Lee et al. (2018)	c2f	73.0 ELMo				1
Joshi et al. (2019)	c2f	73.9 BERT	76.9 BERT			1
Joshi et al. (2020)	c2f		79.6 SpanB			1
Kirstain et al. (2021)	s2e		80.3 Longf			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf			1
Dobrovolskii (2021)	WL		81.0 RoBE			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6RoBE			1
Liu et al. (2022)	ASP	76.6 T5	${ }^{79.3}{ }_{\text {T } 5}$	82.2FT5	82.5 FT 5	$\mathcal{O}(n)$

seq2seq: Coreference Resolution through a seq2seq Transition-Based System

Bohnet et al. (2023)

Input: Speaker-A I still have n't gone to that fresh French restaurant by your house
Prediction: SHIFT: next sentence
Input: Speaker- $A \mathrm{I}_{2}$ still have n't gone to that fresh French restaurant by your house Speaker-A I_{17} 'm like dying to go there

Prediction:

A $\mathrm{I}_{17} \rightarrow \mathrm{I}_{2}$
B SHIFT: next sentence
Input: Speaker-A [1 I] still have n't gone to that fresh French restaurant by your house Speaker-A [1 I]'m like dying to go there Speaker- B You mean the one right next to the apartment

Prediction:

A You \rightarrow [1
B the apartment \rightarrow your house
C the one right next to the apartment \rightarrow that fresh French restaurant by your house
D Shift: next sentence

Input: Speaker-A [1 I] still have n't gone to [3 that fresh French restaurant by [2 your house]] SpeakerA [1 I] 'm like dying to go there Speaker- B [1 You] mean [3 the one right next to [2 the apartment]] Speaker-B yeah yeah yeah
Prediction: SHIFT: next sentence

Figure 1: Example of one of our transition-based coreference systems, the Link-Append system. The system processes a single sentence at a time, using an input encoding of the prior sentences annotated with coreference clusters, followed by the new sentence. As output, the system makes predictions that link mentions in the new sentence to either previously created coreference clusters (e.g., "You $\rightarrow[1 "$) or when a new cluster is created, to previous mentions (e.g., "the apartment \rightarrow your house"). The system predicts "SHIFT" when processing of the sentence is complete. Note in the figure we use the word indices 2 and 17 to distinguish the two incidences of "I" in the text.
Figure 1 of "Coreference Resolution through a seq2seq Transition-Based System", Bohnet et al. (2023)

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\underset{\sim}{\text { large }} \mathbf{~ P L M}$	$\underset{\sim 3 B}{x \mid ~ P L M}$	$\begin{gathered} x \times 1 \text { PLM } \\ \sim 11 B \end{gathered}$	NN calls
Lee et al. (2017)	e2e	$67.2 \varnothing$				1
Lee et al. (2018)	e2e	70.4 ELMo				1
Lee et al. (2018)	c2f	73.0 ELMo				1
Joshi et al. (2019)	c2f	73.9 BERT	$76.9{ }^{\text {BERT }}$			1
Joshi et al. (2020)	c2f		$79.6{ }_{\text {SpanB }}$			1
Kirstain et al. (2021)	s2e		80.3 Longf			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf			1
Dobrovolskii (2021)	WL		81.0 RoBE			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6RoBE			1
Liu et al. (2022)	ASP	${ }^{76.6}$ T5	79.3 T5	$82.2 \mathrm{FT5}$	82.5FT5	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			$78.0 \mathrm{mev}_{5}$	$83.3 \mathrm{mT5}$	$\mathcal{O}(n)$

CorefQA: Coreference Resolution as Querybased Span Prediction

Wu et al. (2020)

Original Passage

In addition , many people were poisoned when toxic gas was released. They were poisoned and did not know how to protect themselves against the poison.

Our formulation

Q1: Who were poisoned when toxic gas was released?
A1: [They, themselves]
Q2: What was released when many people were poisoned?
A2: [the poison]

Q3: Who were poisoned and did not know how to protect themselves against the poison?
A3: [many people, themselves]
Q4: Whom did they not know how to protect against the poison?
A4: [many people, They]
Q5: They were poisoned and did not know how to protect themselves against what?
A5: [toxic gas]

Figure 1: An illustration of the paradigm shift from coreference resolution to query-based span prediction. Spans with the same format represent coreferent mentions.
Figure 1 of "CorefQA: Coreference Resolution as Query-based Span Prediction", Wu et al. (2020)

- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda=0.2$ and maximum length $L=10$.
- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda=0.2$ and maximum length $L=10$.
- For a mention, we compute the antecedent score $s_{a}(i \mid j)$ by
- constructing a context-query input for SpanBERT,
- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda=0.2$ and maximum length $L=10$.
- For a mention, we compute the antecedent score $s_{a}(i \mid j)$ by
- constructing a context-query input for SpanBERT,
- using BIO encoding to represent the antecedent (and possibly several of them); an antecedent ε is represented using all O-s.
- Using SpanBERT and representing each span by its starting and ending token, compute mention scores and keep the top-scoring λn mentions for $\lambda=0.2$ and maximum length $L=10$.
- For a mention, we compute the antecedent score $s_{a}(i \mid j)$ by
- constructing a context-query input for SpanBERT,
- using BIO encoding to represent the antecedent (and possibly several of them); an antecedent ε is represented using all O-s.
- To handle bidirectionality, the final antecedent score is computed as

$$
s(i, j)=s_{a}(i \mid j)+s_{a}(j \mid i)
$$

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\underset{\sim}{\text { large PLM }}$	$\begin{array}{ll} x \mid ~ P L M \\ \sim 3 \end{array}$	$\begin{gathered} \text { xxI PLM } \\ \sim 11 \mathrm{~B} \end{gathered}$	NN calls
Lee et al. (2017)	e2e	67.2ø				1
Lee et al. (2018)	e2e	70.4 ELMo				1
Lee et al. (2018)	c2f	73.0 ELMo				1
Joshi et al. (2019)	c2f	73.9 BERT	76.9 BERT			1
Joshi et al. (2020)	c2f		79.6 SpanB			1
Kirstain et al. (2021)	s2e		80.3 Longf			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf			1
Dobrovolskii (2021)	WL		81.0 RoBE			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 RoBE			1
Liu et al. (2022)	ASP	${ }^{76.6}$ T5	79.3 T5	$82.2 \mathrm{FT5}$	$82.5{ }^{\text {FT5 }}$	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			$78.0 \mathrm{mev}_{5}$	$83.3 \mathrm{mT5}$	$\mathcal{O}(n)$
Wu et al. (2020)	CorefQA	79.9 ${ }_{\text {SpanB }}^{\text {Qa }}$	83.1 ${ }_{\text {SpanB }}^{\text {Qa }}$			$\mathcal{O}(n)$

CorPipe: Winning System of CRAC 22 and 23

 Straka and Straková (2022), Straka (2023)

Figure 1 of "ÚFAL CorPipe at CRAC 2023: Larger Context Improves Multilingual Coreference Resolution", Straka (2023)

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\begin{aligned} & \text { large PLM } \\ & \sim 350 \mathrm{M} \end{aligned}$	$\begin{array}{ll} x \mid ~ P L M \\ \sim 3 \end{array}$	$\begin{gathered} x \times 1 \text { PLM } \\ \sim 11 B \end{gathered}$	NN calls
Lee et al. (2017)	e2e	67.2 Ø				1
Lee et al. (2018)	e2e	$70.4 \mathrm{ELMo}^{\text {a }}$				1
Lee et al. (2018)	c2f	73.0 ELMo				1
Joshi et al. (2019)	c2f	73.9 BERT	76.9 BERT			1
Joshi et al. (2020)	c2f		79.6 SpanB			1
Kirstain et al. (2021)	s2e		80.3 Longf			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf			1
Dobrovolskii (2021)	WL		81.0 RoBE			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 RoBE			1
Liu et al. (2022)	ASP	${ }^{76.6}{ }_{\text {T5 }}$	79.3 T5	82.2 FT 5	$82.5{ }^{\text {FT5 }}$	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			$78.0 \mathrm{~m}^{\mathrm{dev}} 5$	83.3 mT 5	$\mathcal{O}(n)$
Wu et al. (2020)	CorefQA	79.9 ${ }_{\text {SpanB }}^{\text {Qa }}$	83.1 ${ }_{\text {SpanB }}^{\text {QA }}$			$\mathcal{O}(n)$
	CorPipe		$80.7{ }_{\text {T } 5}$	$82.0{ }_{\text {FT5 }}$		1

Model OntoNotes English Results

Paper	Model	$\varnothing / E L M o /$ base PLM	$\begin{aligned} & \text { large PLM } \\ & \sim 350 \mathrm{M} \end{aligned}$	$\begin{gathered} x \mid \text { PLM } \\ \sim 3 B \end{gathered}$	$\begin{gathered} \mathrm{xxl} \text { PLM } \\ \sim 11 \mathrm{~B} \end{gathered}$	NN
Lee et al. (2017)	e2e	$67.2 \varnothing$				1
Lee et al. (2018)	e2e	70.4 ELMo				1
Lee et al. (2018)	c2f	73.0 ELMo				1
Joshi et al. (2019)	c2f	73.9 BERT	$76.9_{\text {BERT }}$			1
Joshi et al. (2020)	c2f		79.6 SpanB			1
Kirstain et al. (2021)	s2e		80.3 Longf			1
Otmazgin et al. (2023)	LingMess/s2e		81.4 Longf			1
Dobrovolskii (2021)	WL		81.0 RoBE			1
D'Oosterlinck et al. (2023)	CAW/WL		81.6 RoBE			1
Liu et al. (2022)	ASP	${ }^{76.6}{ }_{\text {T5 }}$	$79.3^{\text {T5 }}$	$82.2 \mathrm{FT5}$	$82.5{ }^{\text {FT5 }}$	$\mathcal{O}(n)$
Bohnet et al. (2023)	seq2seq			$78.0 \mathrm{mTv}^{\text {dev }}$	83.3 mT5	$\mathcal{O}(n)$
Wu et al. (2020)	CorefQA	79.9 ${ }_{\text {Span }}^{\text {Qa }}$	83.1 ${ }_{\text {Span }}^{\text {Qa }}$			$\mathcal{O}(n)$
	CorPipe		$80.7{ }_{\text {T5 }}$	$82.0{ }_{\text {FT5 }}$		1
	CorPipe		$77.2 \mathrm{mT5}$	$78.9 \mathrm{mT5}$		1

Multiple Languages - 17 CorefUD Treebanks

Uniqueness of Mention Heads Across CorefUD

Treebank	Unique mention heads
ca_ancora	99.19%
cs_pcedt	98.72%
cs_pdt	98.64%
de_parcorfull	99.73%
de_potsdamcc	97.43%
en_gum	98.74%
en_parcorfull	99.58%
es_ancora	99.22%
fr_democrat	97.99%
hu_korkor	99.22%
hu_szegedkoref	99.52%
lt_lcc	99.60%
no_bokmaalnarc	95.47%
no_nynorsknarc	95.39%
pl_pcc	95.16%
ru_rucor	99.97%
tr_itcc	99.42%

Uniqueness of Mention Heads Across CorefUD

Treebank	Unique mention heads
pl_pcc	95.16%
no_nynorsknarc	95.39%
no_bokmaalnarc	95.47%
de_potsdamcc	97.43%
fr_democrat	97.99%
cs_pdt	98.64%
cs_pcedt	98.72%
en_gum	98.74%
ca_ancora	99.19%
es_ancora	99.22%
hu_korkor	99.22%
tr_itcc	99.42%
hu_szegedkoref	99.52%
en_parcorfull	99.58%
lt_lcc	99.60%
de_parcorfull	99.73%
ru_rucor	99.97%

Treebank	Unique mention heads	Unique or double head
pl_pcc	95.16%	99.59%
no_nynorsknarc	95.39%	99.95%
no_bokmaalnarc	95.47%	99.95%
de_potsdamcc	97.43%	99.84%
fr_democrat	97.99%	99.96%
cs_pdt	98.64%	99.93%
cs_pcedt	98.72%	99.95%
en_gum	98.74%	99.98%
ca_ancora	99.19%	99.99%
es_ancora	99.22%	100.00%
hu_korkor	99.22%	100.00%
tr_itcc	99.42%	100.00%
hu_szegedkoref	99.52%	100.00%
en_parcorfull	99.58%	100.00%
lt_lcc	99.60%	99.97%
de_parcorfull	99.73%	100.00%
ru_rucor	99.97%	100.00%

Treebank	Unique mention heads	Unique or double head	Unique, double, triple
pl_pcc	95.16%	99.59%	99.96%
no_nynorsknarc	95.39%	99.95%	100.00%
no_bokmaalnarc	95.47%	99.95%	100.00%
de_potsdamcc	97.43%	99.84%	99.95%
fr_democrat	97.99%	99.96%	100.00%
cs_pdt	98.64%	99.93%	99.97%
cs_pcedt	98.72%	99.95%	100.00%
en_gum	98.74%	99.98%	100.00%
ca_ancora	99.19%	99.99%	100.00%
es_ancora	99.22%	100.00%	100.00%
hu_korkor	99.22%	100.00%	100.00%
tr_itcc	99.42%	100.00%	100.00%
hu_szegedkoref	99.52%	100.00%	100.00%
en_parcorfull	99.58%	100.00%	100.00%
lt_lcc	99.60%	99.97%	100.00%
de_parcorfull	99.73%	100.00%	100.00%
ru_rucor	99.97%	100.00%	100.00%

Training on Multiple Treebanks

- Training a single multilingual model improves performance of all treebanks - CorPipe 23, mT5-large

Configuration	Avg	ca	cs pcedt	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	$\begin{aligned} & \mathrm{de} \\ & \text { parc } \end{aligned}$	$\begin{aligned} & \text { de } \\ & \text { pots } \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { gum } \end{aligned}$	$\begin{gathered} \text { en } \\ \text { parc } \end{gathered}$	es	fr	hu korko	$\begin{gathered} \text { hu } \\ \text { szege } \end{gathered}$	lt	no bookm	no nynor	pl	ru	tr
Single Multilingual Model	74.8	81.6	80.3	79.0	69.7	75.4	76.8	66.0	82.8	70.3	69.5	69.8	77.9	81.5	81.7	77.1	75.2	57.2
Per-Corpus Models	-3.7	-1.4	-0.5	-0.4	-7.7	-3.3	-1.6	-7.6	-1.5	-2.0	-9.1	-1.0	-3.0	-2.3	-2.9	-1.0	-2.0	-15.8
Joint Czech Model			-0.1	-0.3														
Joint German Model					-4.8	-3.9												
Joint English Model							-1.9	-4.5										
Joint Parcorfull Model					-4.4			-2.5										
Joint Hungarian Model											-5.9	-1.1						
Joint Norwegian Model														-1.3	-1.8			
Zero-Shot Multilingual Models	-13.2	-4.8	-24.2	-16.0	-13.7	-10.6	-14.4	-13.8	-1.9	-5.4	-15.1	-15.0	-23.4	-14.3	-18.0	-17.5	-15.5	-0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in \%) using the mT5-large model with context size 2560 . We report the average of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5 -run score.

- Training a single multilingual model improves performance of all treebanks - CorPipe 22, RemBERT

Experiment	Avg	ca	CS cedt	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	de parc	de pots	en gum	$\begin{gathered} \text { en } \\ \text { parc } \end{gathered}$	es	fr	hu	1 t	pl	ru
G) Effect of Several Language-specific base Pretrained Models														
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019)	-2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	21)	+1.3												
RobeCzech (Straka et al., 202			+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 2020)							-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.	2020									-0.2				
HuBERT (Nemeskey, 2020)											+3.6			
LitLatBERT (Ulčar and Ro	nik-Š	konja,										+2.7		
HerBERT (Mroczkowski et	al., 20												+1.6	
RuBERT (Kuratov and Ark	ipov,	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

- Training a single multilingual model improves performance of all treebanks - CorPipe 22, XLM-R-large: slight reduction for the largest treebanks

Experiment	Avg		$\begin{aligned} & \text { cs } \\ & \text { cedt } \end{aligned}$	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	de parc	de pots	en gum	$\begin{gathered} \text { en } \\ \text { parc } \end{gathered}$	es	fr	hu	1 t	pl	ru
G) Effect of Several Language-specific base Pretrained Models														
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019)	-2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	2021)	+1.3												
RobeCzech (Straka et al., 202	21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 2020)							-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al	2020)									-0.2				
HuBERT (Nemeskey, 2020)											+3.6			
LitLatBERT (Ulčar and Ro	nik-Ši	onja,										+2.7		
HerBERT (Mroczkowski et	al., 202												+1.6	
RuBERT (Kuratov and Ark	ipov,	019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

- Training a single base-sized multilingual model makes performance of larger treebanks worse
- CorPipe 23 \& 22: Surprisingly, the mixing ratios do not matter much

Configuration	Avg	ca	CS pcedt	$\begin{gathered} \mathrm{cs} \\ \mathrm{pdt} \end{gathered}$	de parc	de pots	$\begin{aligned} & \text { en } \\ & \text { gum } \end{aligned}$	en parc	es	fr	hu korko	$\begin{gathered} \text { hu } \\ \text { szege } \end{gathered}$	$1 t$	no bookm	no nynor	pl	ru	tr
Mix Ratio Weights of Individual Corpora in Percents																		
Logarithmic		8.1	10.0	9.4	1.0	3.2	6.6	1.0	8.3	7.4	2.6	5.8	3.4	7.2	6.9	8.6	6.2	4.2
Uniform		5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9
Square Root		8.4	14.0	11.7	1.4	2.4	5.6	1.4	8.8	6.9	2.0	4.6	2.5	6.5	6.0	9.5	5.1	3.1
Linear		8.7	24.4	17.0	0.2	0.7	3.9	0.2	9.6	5.9	0.5	2.6	0.8	5.3	4.5	11.3	3.2	1.2
B) Average of 5 Runs Using for Every Run the Single Epoch Achieving the Highest Score Across All Corpora																		
Logarithmic	74.8	81.7	79.9	78.6	71.5	76.2	76.6	67.9	82.8	70.4	68.3	69.4	78.0	81.4	81.5	76.9	74.6	55.5
w/o corpus id	-0.2	+0.0	+0.1	+0.2	-1.9	-0.3	-0.3	-0.9	-0.2	-0.4	+0.0	-0.2	-0.2	+0.1	-0.2	+0.3	+1.0	-0.3
Uniform	-0.6	-0.4	-1.1	-0.9	+0.1	-1.0	-0.8	-6.7	-0.4	-0.2	+1.0	+0.1	-0.2	-0.1	+0.2	-0.1	+0.5	+0.0
w/o corpus id	-0.6	-0.7	-0.6	-0.5	+1.0	-1.6	-0.5	-0.6	-0.1	-0.6	+0.3	-0.5	-0.9	-0.1	-1.3	-0.5	+0.8	-3.0
Square Root	-0.2	-0.1	+0.8	+0.7	-2.5	-0.2	-0.1	-4.2	-0.1	+0.0	+0.9	-0.4	+0.2	+0.3	+0.0	+0.4	+1.5	+0.4
w/o corpus id	+0.1	-0.2	+0.6	+0.6	+1.3	-2.1	-0.2	-0.7	+0.2	+0.1	+0.0	-0.4	-0.1	+0.2	+0.1	+0.1	+1.2	+1.1
Linear	$+0.3$	+0.2	+1.1	+1.1	-0.7	-1.9	-0.2	+3.8	+0.5	-0.1	-0.7	-0.1	+0.3	-0.4	+0.3	+0.1	+1.6	+0.0
w/o corpus id	+0.1	+0.0	+1.0	+1.0	-2.1	-2.5	-0.2	+1.3	+0.2	-0.1	+0.4	-0.5	+0.5	+0.4	+0.3	+0.4	+1.0	+0.8

- Similar results on Arabic OntoNotes
- only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	 English	 Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	

- Similar results on Arabic OntoNotes
- only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	 English	 Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	

- Similar results on Arabic OntoNotes
- only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	 English	 Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	
	CorPipe, mT5-large	64.1	66.1	65.9

- Similar results on Arabic OntoNotes
- only 359 training documents, compared to 1,940 English ones

Paper	Method	Arabic only	 English	 Chinese
Min (2021)	e2e, mBERT-base	46.8	56.4	
Min (2021)	e2e, GigaBERT-base	62.1	64.6	
	CorPipe, mT5-large	64.1	66.1	65.9
Bohnet et al. (2022)	seq2seq, mT5-xxl		68.7	

- Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	 English	Chinese \& Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	

- Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	 English	 Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	
	CorPipe, mT5-large	70.3	71.6	70.2

- Similar results also on Chinese OntoNotes

Paper	Method	Chinese only	 English	 Arabic
Xia and Durme (2021)	ICoref, XLM-R-large	63.2	69.0	
	CorPipe, mT5-large	70.3	71.6	70.2
Bohnet et al. (2022)	seq2seq, mT5-xxl		74.3	

Language-specific vs Multilingual PLMs

- For same-sized PLMs \& individual treebanks, the results are mixed.

Experiment	Avg	ca	$\begin{gathered} \text { cs } \\ \text { pcedt } \end{gathered}$	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	de parc	de pots	en gum	$\begin{gathered} \text { en } \\ \text { parc } \end{gathered}$	es	fr	hu	lt	pl	ru

G) Effect of Several Language-specific base Pretrained Models														
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019)	-2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	021)	+1.3												
RobeCzech (Straka et al., 202	21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 2020)							-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al	2020									-0.2				
HuBERT (Nemeskey, 2020											+3.6			
LitLatBERT (Ulčar and Ro	nik-Ši	onja,										+2.7		
HerBERT (Mroczkowski et	al., 20												+1.6	
RuBERT (Kuratov and Ark	ipov,	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

- For same-sized PLMs \& multilingual training, the results are mostly worse.

G) Effect of Several Language-specific base Pretrained Models														
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019)	-2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	202)	+1.3												
RobeCzech (Straka et al., 20			+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 2020)							-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al	2020)									-0.2				
HuBERT (Nemeskey, 2020)											+3.6			
LitLatBERT (Ulčar and Ro	nik-Ši	onja,										+2.7		
HerBERT (Mroczkowski et	al., 202												+1.6	
RuBERT (Kuratov and Ark	ipov,	019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

| | C) | EFFECT OF MULTILINGUAL DATA AND | THE PRETRAINED MODEL | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| XLM-R base multilingual | 73.3 | 75.8 | 76.0 | 75.0 | 73.4 | 74.1 | 73.1 | $\mathbf{7 5 . 4}$ | 78.4 | 66.1 | 65.2 | $\mathbf{7 8 . 0}$ | 72.1 | 71.7 |
| XLM-R base individual | -4.6 | -4.4 | -0.3 | -1.1 | -7.8 | -12.1 | -1.9 | -12.2 | -2.8 | -3.0 | -3.8 | -4.6 | -2.3 | -6.1 |

- Base-sized language-specific PLMs worse than large-sizes multilingual.

Experiment	Avg	ca	$\begin{gathered} \text { cs } \\ \text { pcedt } \end{gathered}$	CS pdt	$\begin{gathered} \text { de } \\ \text { parc } \end{gathered}$	de pots	en gum	$\begin{aligned} & \text { en } \\ & \text { parc } \end{aligned}$	es	fr	hu	lt	pl	ru

G) Effect of Several Language-specific base Pretrained Models														
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2	63.2	75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019)	-2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,	2021)	+1.3												
RobeCzech (Straka et al., 202	21)		+2.0	+2.8										
gBERT (Chan et al., 2020)					-9.9	+5.3								
SpanBERT (Joshi et al., 2020)							-0.4	-2.4						
BETO (Cañete et al., 2020)									+0.4					
CamemBERT (Martin et al.	2020)									-0.2				
HuBERT (Nemeskey, 2020)											+3.6			
LitLatBERT (Ulčar and Rob	nik-Ši	konja,										+2.7		
HerBERT (Mroczkowski et	al., 202												+1.6	
RuBERT (Kuratov and Ark	ipov,	2019)												+0.2
XLM-R large individual	+4.0	+4.6	+3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
RemBERT individual	-0.0	+4.9	+3.1	+3.1	-15.2	+0.0	+2.6	-18.3	+3.9	+3.8	+3.3	-4.3	+5.0	+4.3
XLM-R large multilingual	+6.1	+6.1	+2.1	+3.2	+8.0	+16.2	+4.1	+7.7	+5.0	+4.8	+6.9	+4.6	+5.1	+6.9
RemBERT multilingual	+6.6	+6.0	+3.6	+4.4	+10.6	+14.5	+4.3	+6.1	+5.5	+5.1	+7.7	+3.5	+6.0	+9.0

Zero-shot Evaluation of Unseen Language

- CorPipe 22 unseen language performance comparable to the shared task baseline (c2f + mBERT)

Experiment	Avg	ca	cs pcedt	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	de parc	de pots	$\begin{aligned} & \text { en } \\ & \text { gum } \end{aligned}$	$\begin{gathered} \text { en } \\ \text { parc } \end{gathered}$	es	fr	hu	$1 t$	pl	ru
F) Zero-shot Evaluation of a Multilingual Model														
Multilingual XLM-R base	73.3	75.8	76.0	75.0	73.4	74.1	73.1	75.4	78.4	66.1	65.2	78.0	72.1	71.7
Zero-shot XLM-R base	-17.1	-11.1	-28.6	-23.8	-13.3	-13.8	-19.8	-18.5	-6.8	-7.6	-16.1	-23.8	-24.6	-15.1
Multilingual RemBERT	+1.9	+1.6	+3.3	+3.3	+2.9	+2.4	+2.4	-6.1	+2.7	+2.0	+4.0	-1.2	+3.7	+2.9
Zero-shot RemBERT	-12.5	-6.7	-23.7	-20.6	-11.1	-7.5	-15.6	-9.8	-2.8	-8.3	-10.5	-20.0	-18.3	-7.2
Multilingual RemBERT	75.3	77.4	79.3	78.3	76.3	76.5	75.5	69.3	81.1	68.1	69.2	76.8	75.8	74.6
Zero-shot RemBERT	-14.4	-8.3	-27.0	-23.8	-14.0	-9.9	-18.0	-3.7	-5.6	-10.4	-14.5	-18.8	-22.0	-10.2
Model	Avg	ca	cedt pcedt	$\begin{gathered} \text { cs } \\ \text { pdt } \end{gathered}$	de parc	de pots	$\begin{gathered} \text { en } \\ \text { gum } \end{gathered}$	$\begin{aligned} & \text { en } \\ & \text { parc } \end{aligned}$	es	fr	hu	It	pl	ru
Baseline to RemBERT	-11,0	-13,3	-9,1	-10,7	-20,9	-19,1	-9,1	-12,0	-15,5	-13,6	-10,5	-8,1	-12,2	-11,9

- CorPipe 23 unseen language performance slightly better than the shared task baseline ($\mathrm{c} 2 \mathrm{f}+\mathrm{mBERT}$)

Configuration	Avg	ca	CS pcedt	cs pdt	de parc	$\begin{aligned} & \text { de } \\ & \text { pots } \end{aligned}$	en gum	en parc	es	fr	hu korko	$\begin{gathered} \text { hu } \\ \text { szege } \end{gathered}$	1 t	no bookm	no nynor	pl	ru	tr
Single Multilingual Model	74.8	81.6	80.3	79.0	69.7	75.4	76.8	66.0	82.8	70.3	69.5	69.8	77.9	81.5	81.7	77.1	75.2	57.2
Per-Corpus Models	-3.7	-1.4	-0.5	-0.4	-7.7	-3.3	-1.6	-7.6	-1.5	-2.0	-9.1	-1.0	-3.0	-2.3	-2.9	-1.0	-2.0	-15.8
Joint Czech Model			-0.1	-0.3														
Joint German Model					-4.8	-3.9												
Joint English Model							-1.9	-4.5										
Joint Parcorfull Model					-4.4			-2.5										
Joint Hungarian Model											-5.9	-1.1						
Joint Norwegian Model														-1.3	-1.8			
Zero-Shot Multilingual Models	-13.2	-4.8	-24.2	-16.0	-13.7	-10.6	-14.4	-13.8	-1.9	-5.4	-15.1	-15.0	-23.4	-14.3	-18.0	-17.5	-15.5	-0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in \%) using the mT5-large model with context size 2560 . We report the average of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5 -run score.

Model	Avg	ca	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu korko	hu szege	It	no bookm	no nynor	pl	ru	tr
Baseline to Multilingual	$-17,8$	$-16,3$	$-12,6$	$-13,8$	$-25,6$	$-18,3$	$-13,7$	$-30,8$	$-15,9$	$-15,0$	$-14,2$	$-6,2$	$-11,8$	$-12,5$	$-41,0$	$-12,0$	$-9,4$	$-34,5$

Zero-shot Evaluation of Unseen Language

- OntoNotes demonstrates similar behavior, with largest decrease on unseen Chinese

Model	English	Arabic	Chinese
CorPipe, mT5-large, individual treebanks	77.2	64.1	70.3

- OntoNotes demonstrates similar behavior, with largest decrease on unseen Chinese

Model	English	Arabic	Chinese
CorPipe, mT5-large, individual treebanks	77.2	64.1	70.3
CorPipe, mT5-large, unseen language	61.7	54.1	48.3

Education and early loves
Byron received his early formal education at Aberdeen Grammar School, and in August 1799 entered the school of Dr. William Glennie, in Dulwich. [17]
Placed under the care of a Dr. Bailey, he was encouraged to exercise in moderation but not restrain himself from "violent" bouts in an attempt to overcompensate for his deformed foot.
His mother interfered with his studies, often withdrawing him from school, with the result that he lacked discipline and his classical studies were neglected.
In 1801, he was sent to Harrow, where he remained until July 1805. [6]
An undistinguished student and an unskilled cricketer, he did represent the school during the very first Eton v Harrow cricket match at Lord 's in 1805. [19]
His lack of moderation was not restricted to physical exercise.
Byron fell in love with Mary Chaworth, whom he met while at school, [6] and she was the reason he refused to return to Harrow in September 1803.

His mother wrote, " He has no indisposition that I know of but love, desperate love, the worst of all maladies in my opinion. In short, the boy is distractedly in love with Miss Chaworth." [6]
In Byron 's later memoirs, " Mary Chaworth is portrayed as the first object of his adult sexual feelings." [20]
Byron finally returned in January 1804, [6] to a more settled period which saw the formation of a circle of emotional involvements with other Harrow boys, which he recalled with great vividness: "My school friendships were with me passions (for I was always violent)." [21]

Questions?

