Scalar Anaphora: Annotating Degrees of Coreference in Text

Bingyang Ye, Jingxuan Tu, Kyeongmin Rim, James Pustejovsky

December 6, 2023

CRAC 2023

Concept of Anaphora Resolution

- Anaphora resolution is the task of identifying when two or more narrative entities should be resolved as anaphorically bound.
 - Coreference: entities are semantically identical
 - Anaphora: entities are semantically related

Binary doesn't work

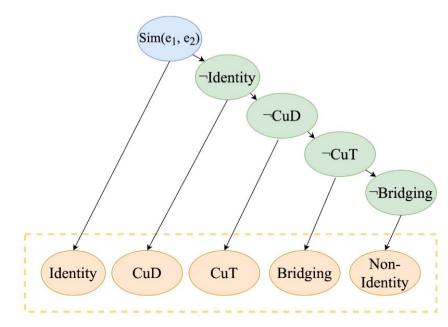
- 1. On homecoming night *Postville* feels like Hometown, USA, but a look around this town of 2,000 shows *it*'s become a miniature Ellis Island . . . For those who prefer the old Postville, Mayor John Hyman has a simple answer. (ACE)
- 2. On homecoming night *Postville* feels like Hometown, USA, but a look around this town of 2,000 shows *it*'s become a miniature Ellis Island . . . For those who prefer *the old Postville*, Mayor John Hyman has a simple answer. (OntoNotes)

There's also a gap

• The United States has officially restored diplomatic relations with Yugoslavia . . . The White House said the United States will provide 45 million dollars in food aid to Yugoslavia.

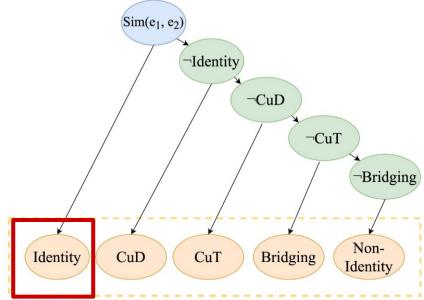
We need a middle ground

- Near Identity (NIDENT)
 - Recasens et al. 2011
 - A concept of partial identity relations
 - A typology of fifteen types
 - A corpus of weak/strong relations



We need a middle ground

- Scalar Anaphora
 - Determine the degree of similarity between mention pairs
 - Simpler typology then NIDENT
 - Fill the gap between anaphoric relations (e.g., bridging) and coreference



- A coreference scale from strict identity to strict non-identity
- Ordered by referential similarity

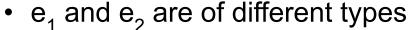


- Identity
 - e₁ and e₂ are substitutible under both transparent and opaque contexts

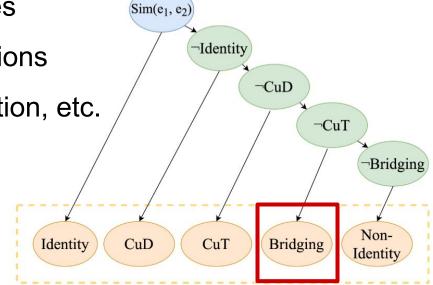
- Coreference under Description
 - e₁ and e₂ are **not** substitutible under both transparent and opaque contexts
 - Arises with occupational and functional descriptions
 - (1) **Clinton**[ANTECEDENT], **the Senator**[ANAPHOR] from New York, voiced her concerns about the proposed bill during the congressional hearing.



- Coreference under Transformation (Rim et al. (2023))
 - the formal difference between


e₁ and e₂ is a result of transformative action

- e₁ and e₂ are substance identical
- an onion and chopped onion



Bridging

- e₁ and e₂ holds tangible relations
- E.g. part-of, member-of, location, etc.

Scalar Anaphora Annotation

- 35 Wikipedia docs from Phrase Detective 3.0 gold
- Use the annotators' disagreement to automatically extract SA relations
- Disagreement Score = number of disagreements / total number of judgements
- For each doc, we randomly sampled three pairs for each Disagreement Score bin ([0, 0.4), [0.4, 0.7), [0.7, 1.0])
- 308 pairs split into 3 batches after excluding edge cases

Scalar Anaphora Annotation

IAA

	F1	Cohen's κ
Round 1	51.43	0.31
Round 2	66.67	0.51
Round 3	76.19	0.64

Table 1: IAA of each annotation round.

Scalar Anaphora Annotation

Stats

	Count	Ratio (%)	IAA (F1)
IDENTITY	114	37.0	75.98
CUD	31	10.1	40.68
CUT	18	5.8	37.04
BRIDGING	129	41.9	70.87
Non-Identity	16	5.2	36.36
OVERALL	308	100	65.31

Table 2: Statistics of annotation in terms of SA relation.

Scalar Anaphora Resolution

- Formalize the task as identifying the SA relation between each mention pair given the sentence context of the entity
- Data split in terms of relation type
- Add "negative" examples

Experiment 1: SA Resolution with T5

Set the input sequence as question answering format

Figure 3: Example of T5 model input and output for SA resolution task.

Experiment 1: SA Resolution with T5

Results

	P	R	F1
IDENTITY	56.25	78.26	65.45
CUD	100	16.67	28.57
CUT	0	0	0
Bridging	60.00	57.69	58.82
NON-IDENTITY	0	0	0
NEGATIVE	100	28.57	44.44
OVERALL	52.71	30.20	32.88

Table 5: Pairwise relation classification results on the test set with T5.

Experiment 2: SA Resolution with GPT-4

- Prompt tuning
 - Human Instruction
 - Flat
 - Hierarchical
 - Exemplar
 - 0 shot
 - Few shot
 - Random
 - In-domain

CoT

Experiment 2: SA Resolution with GPT-4

Results on different prompt settings

		P	R	F1
Flat	0-shot	32.41	40.00	33.63
	5-shot-random	36.94	33.33	26.79
riat	5-shot-domain		30.00	21.30
	5-shot-CoT	40.00	40.00	36.41
	0-shot	44.44	30.00	34.78
Hierorchy	5-shot-random	46.30	30.00	27.78
Hierarchy	5-shot-domain	41.32	30.00	34.76
	5-shot-CoT	50.11	36.67	37.90

Table 7: Pairwise relation classification results on 25 random examples with different prompt settings.

Experiment 2: SA Resolution with GPT-4

Results

	P	R	F1
IDENTITY	46.81	95.65	62.86
CUD	10.00	16.67	12.50
CUT	40.00	50.00	44.44
BRIDGING	66.67	15.38	25.00
Non-Identity	0	0	0
NEGATIVE	100	14.29	25.00
OVERALL	43.91	32.00	28.30

Table 8: Pairwise relation classification results on the test set with GPT-4.

Conclusion

- Reintroduce the complexity of conference, non-coreference and anaphora.
- A unified typology of different degrees of semantic similarity to address the issue of near identity and fill the gap between coreference and bridging.
- A corpus of the new Scalar Anaphora typology and some preliminary results using LLMs.
- A potential integration into the Universal Anaphora schema.

