Towards Transparency in Coreference Resolution: A Quantum-Inspired Approach

Hadi Wazni and Mehrnoosh Sadrzadeh

https://arxiv.org/abs/2312.00688

CRAC 2023, the Sixth Workshop on Computational Models of Reference, Anaphora and Coreference, EMNLP 2023

Motivation

- Large language models (LLMs), such as GPT-3 have achieved impressive results in various NLP tasks.
 - face criticism for being black boxes
- One way to enhance the transparency and interpretability of these models is to explicitly integrate linguistic structure into them.
- Distributional Compositional Categorical (DisCoCat) framework:
 - meaning (or semantics) of a sentence = grammatical (or syntactic) structure + distributional (or statistical) data
 - a symbolic model of grammar, the Lambek calculus, L
 - in need of large computational resources and has limited scalability

Lambek calculus

Functional word types

- Given a set of atomic types {n, s} :
 - generate L types using connectives \, and /
 - adjectives take input nouns on the right, n/n
 - verbs take subjects on the left (and objects on the right) and return a sentence.
 - intransitive verb n\s, transitive verb n\s/n

$$\frac{\underline{Sam}}{\underline{n}} \quad \frac{\underline{sleeps}}{n \setminus s}$$

Lambek calculus with soft subexponentials

- SLLM has two modalities: one for copying !, one for moving V
 - referable words are typed !∇n,
 - "Sam" is copyable (!) and movable (∇)
 - referential words are typed ∇n\n
 - *"He"* looks for a copy of an ∇n type word on its left, and returns the copy

Methodology

Pipeline: parser

the students $:!\nabla n$, read $:n \setminus s/n$, the books :n, They $: \nabla n \setminus n$, were $:n \setminus s/(n/n)$, learning :n/n,

Methodology Pipeline: DisCoCat diagram

An abstract representation of the sentence reflecting the relationships between the words

Methodology

Pipeline: rewrite

 The string diagram can be simplified: remove specific interactions between words that might be considered redundant to make the computation more amenable to implementation on a quantum processing unit

Methodology

Pipeline: rewrite

 The resulting string diagram can be converted into a concrete quantum circuit (or a tensor network in the case of a "classical" experiment), based on a specific parameterization scheme and concrete choices of ansätze.

Example 2 Object Anaphora

the students : n, read : $n \leq n$, the books : $! \nabla n$, They : $\nabla n \setminus n$, were : $n \leq n/n$, interesting : n/n,

$$\frac{\overline{n \longrightarrow n} \quad \overline{n \longrightarrow n}}{\frac{n \longrightarrow n}{n \longrightarrow n}} / L}{\frac{\overline{n \longrightarrow n} \quad \overline{n \longrightarrow n}}{\frac{n/n, n \longrightarrow n}{n/n \longrightarrow n/n}} / L}{\frac{\overline{s \longrightarrow s} \quad \overline{s \longrightarrow s \times s}}{\overline{s, s \longrightarrow s \times s}} / L} \cdot_{R} } \\ \frac{\overline{n \longrightarrow n} \quad \frac{\overline{n \longrightarrow n} \quad \overline{s, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{s, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \setminus_{L} } \\ \frac{\overline{n \longrightarrow n} \quad \frac{\overline{n \longrightarrow n} \quad \overline{s/n, n, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{s, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \setminus_{L} } \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{n, n \setminus s/n, \nabla n, n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{n, n \setminus s/n, (\nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}}{\overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n, \nabla n \setminus n, n \setminus s/(n/n), n/n \longrightarrow s \times s}} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s/n, \nabla n \setminus s} \times_{L} \\ \frac{\overline{\nabla n \longrightarrow \nabla n} \quad \overline{n, n \setminus s}$$

Motivation

- Quantum Natural Language Processing (QNLP)
 - Categorical Quantum Mechanics + DisCoCat framework
 - String diagrams to translate from grammatical structure to quantum processes
 - Computes word embeddings using parameterized quantum circuits
 - sentence classification, music classification, translation, sentiment analysis..

Quantum Algorithms for Compositional Natural Language Processing, https://arxiv.org/abs/1608.01406 Quantum Language Processing, https://arxiv.org/abs/1902.05162 Foundations for Near-Term Quantum Natural Language Processing, https://arxiv.org/abs/2012.03755

String Diagrams to PQCs

Pipeline: ansatze

Translation from string diagrams to PQCs using a single-layer IQP ansatz, where each grammatical type is mapped to a 1-qubit space.

Data Collection

Generate Synthetic data

We selected entries from the Definite Pronoun Resolution Dataset

- excluded sentences containing proper nouns and negation
- gave preference to shorter sentences
- process resulted in a total of 10 entries

(1) The students read the books. They were learning.

- (2) The **students** read the **books**. <u>They</u> were interesting.
- (3) The **storm** delayed the **flight**. It was very dangerous.
- (4) The **storm** delayed the **<u>flight</u>**. **<u>It</u>** was going over the ocean.

Data Collection

Grammatical templates

(1) The students read the books. They were learning.
(2) The students read the books. They were interesting.

{verb, phrasal verb, verb phrase}

{adjective, gerund phrase}

- The students {verb, phrasal verb, verb phrase} the books. They were {adjective, gerund phrase}.
- The {adjective} students {verb, phrasal verb, verb phrase} the books. They were {adjective, gerund phrase}.
- The students {verb, phrasal verb, verb phrase} the {adjective} books. They were {adjective, gerund phrase}.
- ve, gerund phrase}.
- The {adjective} students {verb, phrasal verb, verb phrase} the {adjective} books. They were {adjective, gerund phrase}.

Prompt: Provide alternative sentences by replacing the words or phrases inside the brackets for each statement. Utilize different **verbs, phrasal verbs, verb phrases, adjectives, or gerund phrases** to create new sentences based on the given structure. Ensure that the pronoun '**they**' in the second sentence refers to '**students**' / Ensure that the pronoun '**they**' in the second sentence refers to '**books**'

Data Collection

Filtering

- We eliminated incorrect referent sentences, duplicate examples
 - kept well-formed sentences that have meaningful content
 - picked 300 to 400 examples for each entry
 - generated over 8 million diverse combinations
- 16,400 examples, 200,000 words, with 1,214 unique vocabulary.
 - 10,496 pairs (~60%) for training
 - 2,624 pairs (~20%) for validation
 - 3,280 pairs (~20%) for testing
- The <u>students</u> researched the **books**. <u>They</u> were seeking knowledge. 1
- The ambitious <u>students</u> explored the **books**. <u>They</u> were boring. 0
- The determined students read the humorous <u>books</u>. <u>They</u> were visually stunning. 1
- The creative <u>students</u> discussed the ancient **books**. <u>They</u> were written by experts. 0

Hybrid Quantum-Classical Training

Supervised Binary Classification

Hybrid Quantum-Classical Training Results

QuantumCoref End-to-End System

nput: The destructive <u>storm</u> delayed the <u>light</u> to the <u>city</u> . <u>It</u> was causing flash floods.		e Mention- ds. detection	,	SLLM classifier	{(storm, it, 1), (flight, i	it, 0), (city, it, 0)
	{(storm, it), (flight, it), (city, it)	}			
del	F1 Score	Model	F1 Score	Model		F1 Score
M Full 0.914		CoreNLP	0.563	63 CoreNLP + QuantumCoref	QuantumCoref	0.930
SVM Add	0.821				-	
M Add	0.821	Neural Coreference	0.585	Neural Core	eference + QuantumCoref	0.946
M Add	0.821	Neural Coreference SpanBERT	0.585 0.927	Neural Cor SpanBERT	eference + QuantumCoref + QuantumCoref	0.946 0.986
	ructive <u>s</u> <u>y</u> . <u>It</u> was d del VI Full	ructive <u>storm</u> delayed the <u>y. It</u> was causing flash floo {(storm, it del F1 Score M Full 0.914	cructive storm delayed the y. It was causing flash floods.Mention- detection{(storm, it), (flight, it), (city, it)}delF1 ScoreM Full0.914	cructive storm delayed the y. It was causing flash floods.Mention- detection{(storm, it), (flight, it), (city, it)}delF1 Score CoreNLPModelF1 Score 0.563	Gructive storm delayed the y. It was causing flash floods. Mention-detection SLLM classifier {(storm, it), (flight, it), (city, it)} (storm, it), (flight, it), (city, it)} Model Model del F1 Score Model F1 Score Model M Full 0.914 CoreNLP 0.563 Model	tructive storm delayed the y. It was causing flash floods.Mention- detectionSLLM classifier(storm, it, 1), (flight, it), (flight, it), (flight, it), (city, it)}delF1 Score M FullModelF1 Score 0.914ModelModelF1 Score 0.563Model CoreNLP + QuantumCoref

- Fine-tuned **SpanBERT**, unsurprisingly, it achieved an F1 score of **0.998**.
- Experiments were not specifically aimed at showcasing *quantum advantage* over classical systems.
- Our aim was to demonstrate the capabilities of our quantum-based approach, which also offers transparency.
- Fine-tuned SpanBERT = 366 million parameters > QuantumCoref = 2693 parameters.

Thank you !