ÚFAL CorPipe at CRAC 2022, Oct 2022

ÚFAL CorPipe at CRAC 2022: Effectivity of Multilingual Models for Coreference Resolution

Milan Straka, Jana Straková

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

• winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution

ÚFAL CorPipe at CRAC 2022, Oct 2022

- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks

- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks
 - works better than individual models

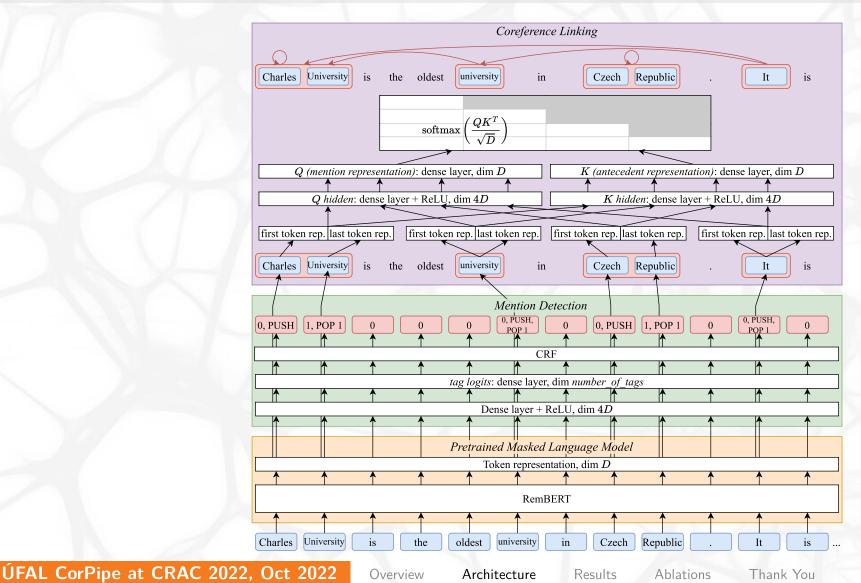
- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks
 - works better than individual models
 - can be used even on unseen languages

- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks
 - works better than individual models
 - can be used even on unseen languages
 - $^{\rm O}$ contrary to the baseline solution:
 - CorPipe first predicts mentions

- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks
 - works better than individual models
 - can be used even on unseen languages
 - $^{\rm O}$ contrary to the baseline solution:
 - CorPipe first predicts mentions
 - only then it predicts links between the predicted mentions

ÚFAL CorPipe at CRAC 2022, Oct 2022

- winning entry of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
- distinguishing features:
 - a single multilingual model for all 13 treebanks
 - works better than individual models
 - can be used even on unseen languages
 - $^{\rm O}$ contrary to the baseline solution:
 - CorPipe first predicts mentions
 - only then it predicts links between the predicted mentions
 - both tasks performed by a single model


ÚFAL CorPipe at CRAC 2022, Oct 2022

Architecture

Results Ablati

Corpipe Architecture

Official CRAC 2022 Results

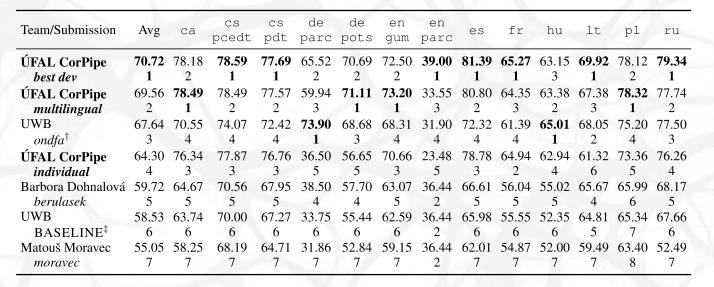


Table 1: Official results of CRAC 2022 Shared Task on the test set (CoNLL score in %). The systems [†] and [‡] are described in Pražák and Konopik (2022) and Pražák et al. (2021), respectively; the rest in Žabokrtský et al. (2022).

ÚFAL CorPipe at CRAC 2022, Oct 2022

Official CRAC 2022 Results

Team/Submission	Avg	ca	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
ÚFAL CorPipe	70.72	78.18	78.59	77.69	65.52	70.69	72.50	39.00	81.39	65.27	63.15	69.92	78.12	79.34
best dev	1	2	1	1	2	2	2	1	1	1	3	1	2	1
ÚFAL CorPipe	69.56	78.49	78.49	77.57	59.94	71.11	73.20	33.55	80.80	64.35	63.38	67.38	78.32	77.74
multilingual	2	1	2	2	3	1	1	3	2	3	2	3	1	2
UWB $ondfa^{\dagger}$	67.64	70.55	74.07	72.42	73.90	68.68	68.31	31.90	72.32	61.39	65.01	68.05	75.20	77.50
	3	4	4	4	1	3	4	4	4	4	1	2	4	3
ÚFAL CorPipe	64.30	76.34	77.87	76.76	36.50	56.65	70.66	23.48	78.78	64.94	62.94	61.32	73.36	76.26
individual	4	3	3	3	5	5	3	5	3	2	4	6	5	4
Barbora Dohnalová	59.72	64.67	70.56	67.95	38.50	57.70	63.07	36.44	66.61	56.04	55.02	65.67	65.99	68.17
berulasek	5	5	5	5	4	4	5	2	5	5	5	4	6	5
UWB	58.53	63.74	70.00	67.27	33.75	55.44	62.59	36.44	65.98	55.55	52.35	64.81	65.34	67.66
BASELINE [‡]	6	6	6	6	6	6	6	2	6	6	6	5	7	6
Matouš Moravec	55.05	58.25	68.19	64.71	31.86	52.84	59.15	36.44	62.01	54.87	52.00	59.49	63.40	52.49
<i>moravec</i>	7	7	7	7	7	7	7	2	7	7	7	7	8	7

Table 1: Official results of CRAC 2022 Shared Task on the test set (CoNLL score in %). The systems [†] and [‡] are described in Pražák and Konopik (2022) and Pražák et al. (2021), respectively; the rest in Žabokrtský et al. (2022).

Team/Submission	Avg. with singletons
ÚFAL CorPipe, best dev	72.98
ÚFAL CorPipe, multilingual	71.81
ÚFAL CorPipe, individual	67.93
UWB, ondfa	58.06
Barbora Dohnalová, <i>berulasek</i>	50.84
UWB, BASELINE	49.69
Matouš Moravec, moravec	46.79

ÚFAL CorPipe at CRAC 2022, Oct 2022

Overview Architecture

Results Ablations

Test Results of RemBERT vs XLM-R and Multilinguality

Experiment	Avg	са	cs pcedt					en parc	es	fr	hu	lt	pl	ru
XLM-R base, multilingual	67.8	77.1	75.8	74.3	54.7	66.9	70.1	38.5	77.6	64.2	62.3	69.4	73.3	76.6
Best base model, individual	-5.2	-4.0	+1.5	+2.2	-18.2	-9.8	-3.4	-15.0	-2.4	-2.4	-2.0	-8.1	+0.0	-5.6
Best base model, best dev	+0.4	-0.6	+1.5	+2.2	+2.0	+0.6	-1.0	-0.9	+1.2	-1.1	+0.6	+0.4	+0.0	+0.2
RemBERT, multilingual	+1.8	+1.4	+2.6	+3.3	+5.2	+4.2	+3.1	-4.9	+3.2	+0.1	+1.1	-2.0	+5.0	+1.1
RemBERT, individual	-3.5	-0.7	+2.0	+2.5	-18.2	-10.3	+0.6	-15.0	+1.2	+0.7	+0.7	-8.1	+0.0	-0.4
RemBERT, best dev	+3.0	+1.1	+2.7	+3.4	+10.8	+3.8	+2.4	+0.5	+3.8	+1.0	+0.9	+0.5	+4.8	+2.7

ÚFAL CorPipe at CRAC 2022, Oct 2022

Overview Architecture

Results

Comparing Pretrained Models on Dev

Ú	FAL

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
C) EFFECT OF MULTILINGUAL DATA AND THE PRETRAINED MODEL														
XLM-R base multilingual	73.3	75.8	76.0	75.0	73.4	74.1	73.1	75.4	78.4	66.1	65.2	78.0	72.1	71.7
XLM-R large multilingual	+1.5	+1.7	+1.8	+2.0	+0.3	+4.1	+2.1	-4.5	+2.2	+1.7	+3.1	-0.0	+2.9	+0.9
RemBERT multilingual	+1.9	+1.6	+3.3	+3.3	+2.9	+2.4	+2.4	-6.1	+2.7	+2.0	+4.0	-1.2	+3.7	+2.9
XLM-R base individual	-4.6	-4.4	-0.3	-1.1	-7.8	-12.1	-1.9	-12.2	-2.8	-3.0	-3.8	-4.6	-2.3	-6.1
XLM-R large individual	-0.6	+0.2	+2.8	+3.0	-7.7	-5.2	-0.9	-4.4	+1.0	+0.3	+3.7	-5.4	+3.5	-1.2
RemBERT individual	-4.7	+0.6	+2.8	+1.9	-23.0	-12.1	+0.7	-30.5	+1.1	+0.7	-0.4	-8.9	+2.7	-1.8
RemBERT 50% additional	+0.3	+1.0	+2.5	+2.4	-1.4	-0.5	+1.7	-8.3	+0.9	+1.3	+1.6	-3.5	+3.6	+1.7

ÚFAL CorPipe at CRAC 2022, Oct 2022

Results

Comparing Pretrained Models on Dev

Ú	FAL

Experiment	Avg	са	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
C) Effe	CT OF	MULTIL	INGUA		AND T	he Pr	ETRAIN	ED M	ODEL.				-
XLM-R base multilingual	73.3	75.8	76.0	75.0	73.4	74.1	73.1		78.4		65.2	78.0	72.1	71.7
XLM-R large multilingual	+1.5	+1.7	+1.8	+2.0	+0.3	+4.1	+2.1		+2.2		+3.1	-0.0	+2.9	+0.9
RemBERT multilingual	+1.9	+1.6	+3.3	+3.3	+2.9	+2.4	+2.4	-6.1	+2.7	+2.0	+4.0	-1.2	+3.7	+2.9
XLM-R base individual	-4.6	-4.4	-0.3	-1.1	-7.8	-12.1	-1.9	-12.2	-2.8	-3.0	-3.8	-4.6	-2.3	-6.1
XLM-R large individual	-0.6	+0.2	+2.8	+3.0	-7.7	-5.2	-0.9	-4.4	+1.0	+0.3	+3.7	-5.4	+3.5	-1.2
RemBERT individual	-4.7	+0.6	+2.8	+1.9	-23.0	-12.1	+0.7	-30.5	+1.1	+0.7	-0.4	-8.9	+2.7	-1.8
RemBERT 50% additional	+0.3	+1.0	+2.5	+2.4	-1.4	-0.5	+1.7	-8.3	+0.9	+1.3	+1.6	-3.5	+3.6	+1.7
<u></u>				<	1				-				9	
Experiment	Avg	ca	CS	CS	de parc	de	en	en	es	fr	hu	lt	pl	ru
			pcedt	put	parc	pors	guiii	parc						
G) E	FFECT	OF SE	veral L	ANGU	AGE-SP	ECIFIC	BASE]	PRETRA	INED	Modi	ELS			
XLM-R base individual	68.7	71.4	75.7	73.9	65.7	62.0	71.2		75.6	63.1	61.5	73.4	69.8	65.6
mBERT (Devlin et al., 2019	9) -2.8	-1.5	-3.0	-3.4	-3.3	+0.4	-2.8	-1.1	-1.8	-1.1	-2.7	-7.5	-4.4	-3.6
BERTa (Armengol-Estapé et al.,		+1.3												
RobeCzech (Straka et al., 2	021)		120	0										
			+2.0	+2.0										
			+2.0	+2.0	-9.9	+5.3								
gBERT (Chan et al., 2020) SpanBERT (Joshi et al., 202			+2.0	+2.0	-9.9	+5.3	-0.4	-2.4						
SpanBERT (Joshi et al., 202 BETO (Cañete et al., 2020)			+2.0	+2.0	-9.9	+5.3	-0.4	-2.4	+0.4					
SpanBERT (Joshi et al., 202 BETO (Cañete et al., 2020) CamemBERT (Martin et al.	., 2020)		+2.0	+2.0	-9.9	+5.3	-0.4	-2.4	+0.4	-0.2				
SpanBERT (Joshi et al., 202 BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020)	., 2020))			+2.0	-9.9	+5.3	-0.4	-2.4	+0.4	-0.2	+3.6			
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020 LitLatBERT (Ulčar and Ro	., 2020)) bnik-Ši	konja, 1		+2.0	-9.9	+5.3	-0.4	-2.4	+0.4	-0.2	+3.6	+2.7		
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020) LitLatBERT (Ulčar and Ro HerBERT (Mroczkowski et	., 2020)) bnik-Ši al., 202	konja, 21)		+2.0	-9.9	+5.3	-0.4	-2.4	+0.4	-0.2	+3.6	+2.7	+1.6	
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020) LitLatBERT (Ulčar and Ro HerBERT (Mroczkowski et RuBERT (Kuratov and Ark	., 2020)) bnik-Ši al., 202 hipov, 2	konja, 21) 2019)	2021)		2									+0.2
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020) LitLatBERT (Ulčar and Ro HerBERT (Mroczkowski et RuBERT (Kuratov and Ark XLM-R large individual	., 2020)) bnik-Ši al., 202 hipov, 2 +4.0	konja, 21) 2019) +4.6	2021) +3.1	+4.1	+0.0	+6.9	+1.0	+7.8	+3.8	+3.3	+7.4	-0.8	+5.8	+4.8
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020) LitLatBERT (Ulčar and Ro HerBERT (Mroczkowski et RuBERT (Kuratov and Ark XLM-R large individual RemBERT individual	., 2020)) bnik-Ši al., 202 hipov, 2 +4.0 -0.0	konja, 21) 2019) +4.6 +4.9	2021) +3.1 +3.1	+4.1 +3.1	+0.0 -15.2	+6.9 +0.0	+1.0 +2.6	+7.8 -18.3	+3.8 +3.9	+3.3 +3.8	+7.4 +3.3	-0.8 -4.3	+5.8 +5.0	+4.8
SpanBERT (Joshi et al., 20) BETO (Cañete et al., 2020) CamemBERT (Martin et al. HuBERT (Nemeskey, 2020) LitLatBERT (Ulčar and Ro HerBERT (Mroczkowski et RuBERT (Kuratov and Ark XLM-R large individual	., 2020)) bnik-Ši al., 202 hipov, 2 +4.0	konja, 21) 2019) +4.6	2021) +3.1	+4.1	+0.0 -15.2 +8.0	+6.9	+1.0	+7.8 -18.3 +7.7	+3.8	+3.3 +3.8 +4.8	+7.4	-0.8	+5.8	

ÚFAL CorPipe at CRAC 2022, Oct 2022

Results A

Ablations Thank You

Comparing Mixing Strategies on Dev

Experiment	Avg	ca	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
D) EFFECT OF MIXING RATIOS USING XLM-R BASE PRETRAINED MODEL														
Logarithmic, w/o corpus id	73.3	75.8	76.0	75.0	73.4	74.1	73.1	75.4	78.4	66.1	65.2	78.0	72.1	71.7
Logarithmic, w/ corpus id	-0.4	-0.5	+0.1	+0.3	-0.8	-0.3	-0.6	-4.6	+0.1	+0.6	+1.3	-0.9	+0.3	-0.7
Uniform, w/o corpus id	-0.8	-0.5	-0.2	-0.9	-1.8	-3.5	-0.2	-1.9	+0.0	-0.0	+0.4	-1.1	+0.0	-1.5
Uniform, w/ corpus id	-1.6	-1.1	-0.5	-0.6	-6.4	-2.1	-0.4	-7.0	+0.1	+0.1	-0.5	-1.1	-0.6	-1.2
Linear, w/o corpus id	-0.3	+0.1	+0.8	+1.1	-1.1	-0.5	-0.5	-3.5	-0.1	+0.3	+1.0	+0.3	-0.1	-1.6
E)]	Effec	г оf N	/IIXING F	RATIO	S USINC	REMB	ERT I	PRETRA	INED	Mode	L			
Logarithmic, w/o corpus id	75.3	77.4	79.3	78.3	76.3	76.5	75.5	69.3	81.1	68.1	69.2	76.8	75.8	74.6
Logarithmic, w/ corpus id	+0.6	+0.4	+0.1	+0.1	+3.0	+1.2	-0.1	+5.8	+0.3	+0.9	-2.4	-1.3	+0.1	-0.2
Uniform, w/o corpus id	+0.1	+1.2	-0.3	-0.1	+2.4	+0.5	+0.0	-0.9	-0.1	+0.7	-0.6	-0.2	+0.1	-1.2
Uniform, w/ corpus id	-0.1	-0.0	-0.2	-0.3	-4.2	+0.3	-0.1	+4.5	+0.4	+0.6	-1.0	-0.1	+0.1	-1.2
Linear, w/o corpus id	-0.1	+1.3	+0.1	+0.2	-2.3	-0.5	-1.5	+1.9	+0.5	+0.7	-1.0	+0.4	+0.0	-1.3

ÚFAL CorPipe at CRAC 2022, Oct 2022

Results

Ablations Thank You

Zero-shot Evaluation on Dev

Experiment	Avg	ca	cs pcedt	cs pdt	de parc	de pots	en gum	en parc	es	fr	hu	lt	pl	ru
	F)	Zero-	знот Ev	ALUAT	TION OF	A MUI	LTILIN	GUAL N	Iodei					
Multilingual XLM-R base	73.3	75.8	76.0	75.0	73.4	74.1	73.1	75.4	78.4	66.1	65.2	78.0	72.1	71.7
Zero-shot XLM-R base	-17.1	-11.1	-28.6	-23.8	-13.3	-13.8	-19.8	-18.5	-6.8	-7.6	-16.1	-23.8	-24.6	-15.1
Multilingual RemBERT	+1.9	+1.6	+3.3	+3.3	+2.9	+2.4	+2.4	-6.1	+2.7	+2.0	+4.0	-1.2	+3.7	+2.9
Zero-shot RemBERT	-12.5	-6.7	-23.7	-20.6	-11.1	-7.5	-15.6	-9.8	-2.8	-8.3	-10.5	-20.0	-18.3	-7.2

ÚFAL CorPipe at CRAC 2022, Oct 2022

Overview Architecture

Results

Ablations Thank You

Thank You

Thank You

ÚFAL CorPipe at CRAC 2022, Oct 2022

Results