The Role Of Common Ground For Referential Expressions In Social Dialogue

Jaap Kruijt & Piek Vossen

VU Amsterdam

0

INTRODUCTION

- In long-term human-agent relationships, efficient communication is key
- Over time communication evolves to be more efficient (e.g. Hawkins et al 2021)
- How can an agent learn and use this *common ground* to improve long-term interaction?

INTRODUCTION

- "Look at this old picture of nana..."
- Conventionalized references are hard to resolve!
 - Lots of knowledge assumed to be familiar
- What performance effect does this have for coreference resolution?

INNER CIRCLEVS OUTER CIRCLE

- Inner circle: part of common ground, conventionalized references
- Outer circle: individuals not mentioned before, only relevant for the current discourse
- How sensitive are machine learning models to this distinction?

	Inner	Outer
N° individuals	50	351
N° mentions	2799	2031

DATA

- Data-set of social dialogue with temporal relations between interactions based on episodes of Friends (Choi & Chen 2018)
- Inner / outer circle division
- Keeping the temporal structure intact, we developed three new train and development sets and two test sets
 - Test set A: 4 times as many inner circle mentions as outer circle mentions (4/1 ratio)
 - Test set B: equal amount of inner circle and outer circle mentions (1/1 ratio)

DATA ANALYSIS

- Explorative analysis: do reference patterns for inner and outer circle differ?
- Inner circle: mostly **names** (NNP) and **sequences of names**
- Outer circle: mostly pronouns (PRP) and sequences of pronouns

	NNP	NN	PR	OTHER
Inner	0.38	0.24	0.30	0.08
Outer	0.26	0.24	0.45	0.05

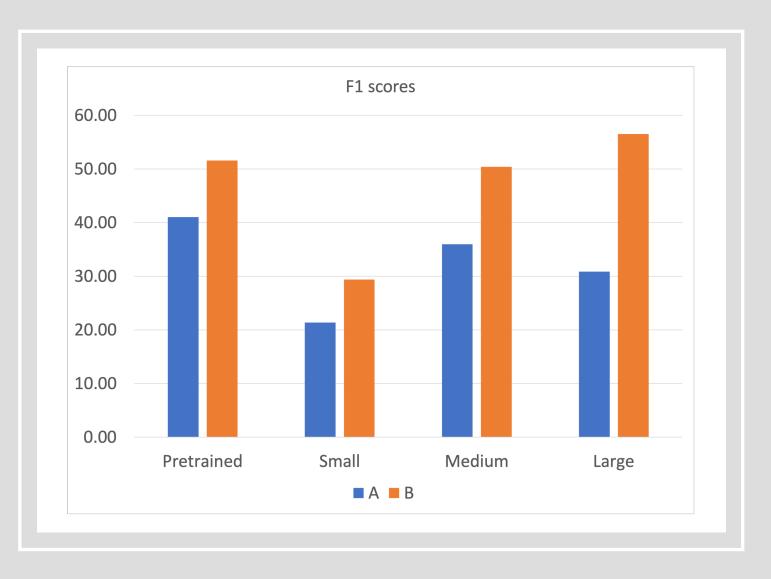
Inner circle	NNP	NN	PRP	Outer circle	NNP	NN	PRP
NULL	58.56	30.25	11.19	NULL	42.72	37.09	20.19
NNP	52.98	19.04	27.98	NNP	46.34	14.33	39.33
NN	24.35	44.50	31.15	NN	11.07	35.36	53.57
PRP	16.99	13.89	69.12	PRP	10.79	15.25	73.96

EXPERIMENT SETUP

- SpanBERT coreference resolution model (Joshi et al 2019)
- 4 models: pretrained, finetuned-small, finetuned-medium and finetuned-large
- Testing on both A (4/1 ratio) and B (1/1 ratio) to examine:
 - Performance on inner vs outer circle mentions
 - Effect of a larger prominence of inner circle mentions
 - Effect of finetuning on related background knowledge

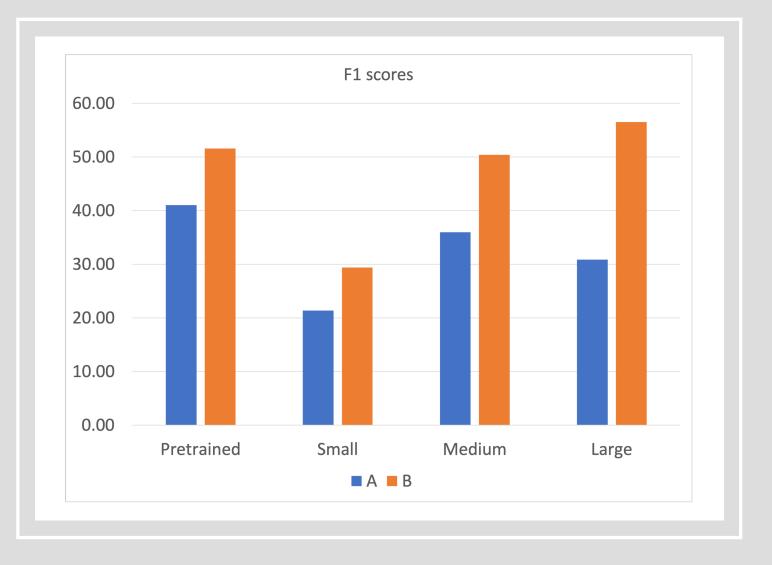
MODEL EVALUATION

• The **Pre-trained** model scores best for A (4/1 ratio)



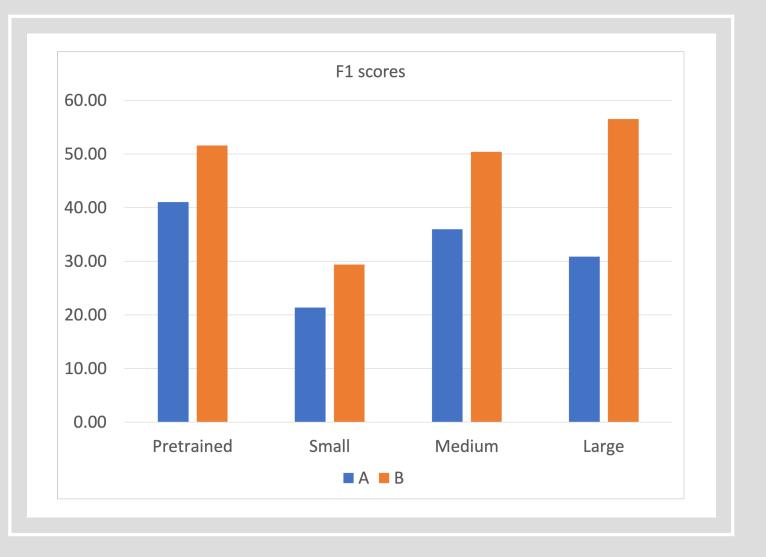
MODEL EVALUATION

- The **Pre-trained** model scores best for A (4/1 ratio)
- The **large** model scores best for B (1/1 ratio)



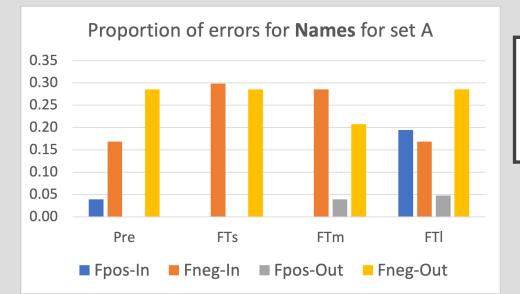
MODEL EVALUATION

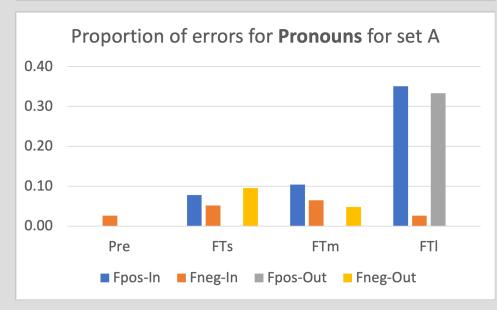
- The **Pre-trained** model scores best for A (4/1 ratio)
- The **large** model scores best for B (1/1 ratio)
- No real gain in fine-tuning for the inner circle mentions?



ERROR ANALYSIS

- More false negative errors for A vs more false positive errors for B
 - Strongest effect for the outer circle mentions
- Could point to trouble distinguishing between inner and outer circle
- More errors for inner circle mentions





ERROR ANALYSIS

- Most false positives with pronouns
- Most false negatives with names
- General **increase** of **false positives** associated with more fine-tuning
 - Notable increase for pronouns
- General **decrease** of false negatives

DISCUSSION

- Results and error analysis suggest that the model is probably over-fitting with more data
- Tendency towards learning more **discourse-related features** rather than learning from background knowledge
- No conclusions whether a knowledge-rich approach would be beneficial for this task

DISCUSSION

• We encourage more research into the role of common ground in reference resolution:

- Data
- Models
- We believe our approach and analysis are relevant for applications of agents which aim to establish a bond through shared social connections
- Future work will focus on a more knowledge-rich approach in an interactive setting

THANK YOU FOR YOUR ATTENTION!

Contact: j.m.kruijt@vu.nl

Code available at: https://github.com/cltl/inner-outer-coreference

14

REFERENCES

- Jinho D. Choi and Henry Y. Chen. 2018. SemEval 2018 task 4: Character identification on multiparty dialogues. In *Proceedings of The 12th International Workshop on Semantic Evaluation*, pages 57–64, New Orleans, Louisiana. Association for Computational Linguistics.
- Hawkins, R. D., Franke, M., Frank, M. C., Goldberg, A. E., Smith, K., Griffiths, T. L., & Goodman, N. D. (2022). From partners to populations: A hierarchical Bayesian account of coordination and convention. *Psychological Review*. Advance online publication.
- Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Span-BERT: Improving Pre-training by Representing and Predicting Spans. *Transactions of the Association for Computational Linguistics*, 8:64–77.
- Picture on slide 2 by <u>Adam Winger</u> on <u>unsplash.com</u>