

INVESTIGATING CROSS-DOCUMENT EVENT COREFERENCE RESOLUTION FOR DUTCH

Loic De Langhe, Orphée De Clercq, Véronique Hoste CRAC 2022 -16/10/2022

language and translation technology team

OVERVIEW

1. Introduction

- Event Coreference Resolution (ECR)
- Motivation
- 2. The ENCORE Corpus
- 3. Experiments
 - Experimental Setup
 - Results and Error Analysis
- 4. Conclusion and future work

EVENT COREFERENCE RESOLUTION (ECR)

1. A disciplined France team has beaten the Red Devils in the world cup semis earlier this week.

2. Belgium lost the semi-final of the 2018 World cup against France with a score of 1-0 on Tuesday.

CONSIDERATIONS AND MOTIVATION

- Difficulties in ECR
 - Lack of data, sparsity and lack of uniformity
 - Coreference resolution across documents
- Why ECR research is valuable
 - Move away from the paradigm of lexical semantics 1.
 - Focus on discourse-level relations to break down topic- and document 2. barriers
 - Practical multi-document applications such as summarization, content-3. based news recommendation and reading comprehension

CROSS-DOCUMENT ECR FOR DUTCH

ENCORE CORPUS

- ENCORE (De Langhe, De Clercq, Hoste, 2022)
 - Large-scale Dutch event coreference corpus
 - Data sourced from a variety of Dutch (Flemish) newspapers
 - Focus on unrestricted events
 - Coreference annotated within event clusters

Cluster id	Topic	# of documents
47	Tim Burton exposition in Genk	11
75	Royal Wedding Prince Harry	24
87	Election of Cuban president	12

ENCORE CORPUS: EVENTS

• Events are annotated based on ECB+ guidelines (Cybulska & Vossen, 2014)

In Guatemala, the volcan de fuego has erupted again today

Event Arguments

- Event Action (trigger)
- Event Time
- Event Location
- Event Participants
 - Human Participants
 - Non-Human Participants

- Event Realis (Certain)
- Event Sentiment (Negative)

Event Properties

- Event Prominence (Main)

ENCORE CORPUS: COREFERENCE

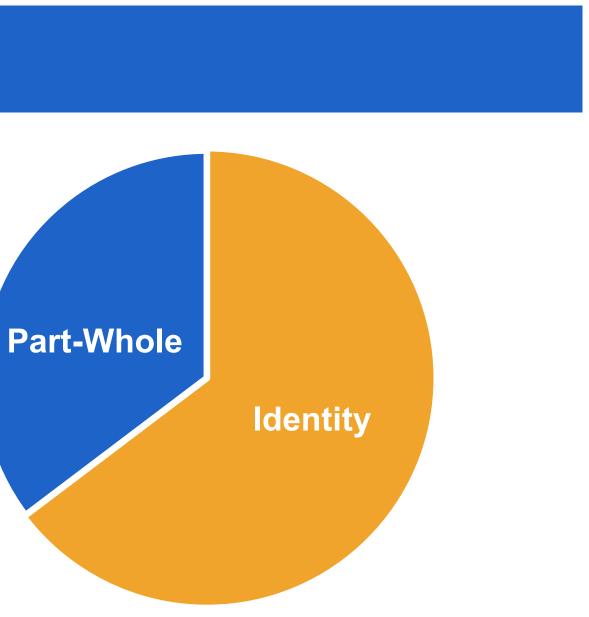
Identity Coreference between events 1.

• Event time (1), location (2) and participants (3) must match

"The 2012 London Olympics were a succes. The games lasted from 27/07/12 to 13/08/12."

- 2. Part-whole Coreference between events
 - One event is fully encompassed by the other

"The oscar ceremony was about to begin, with the presenters preparing for the opening speech."

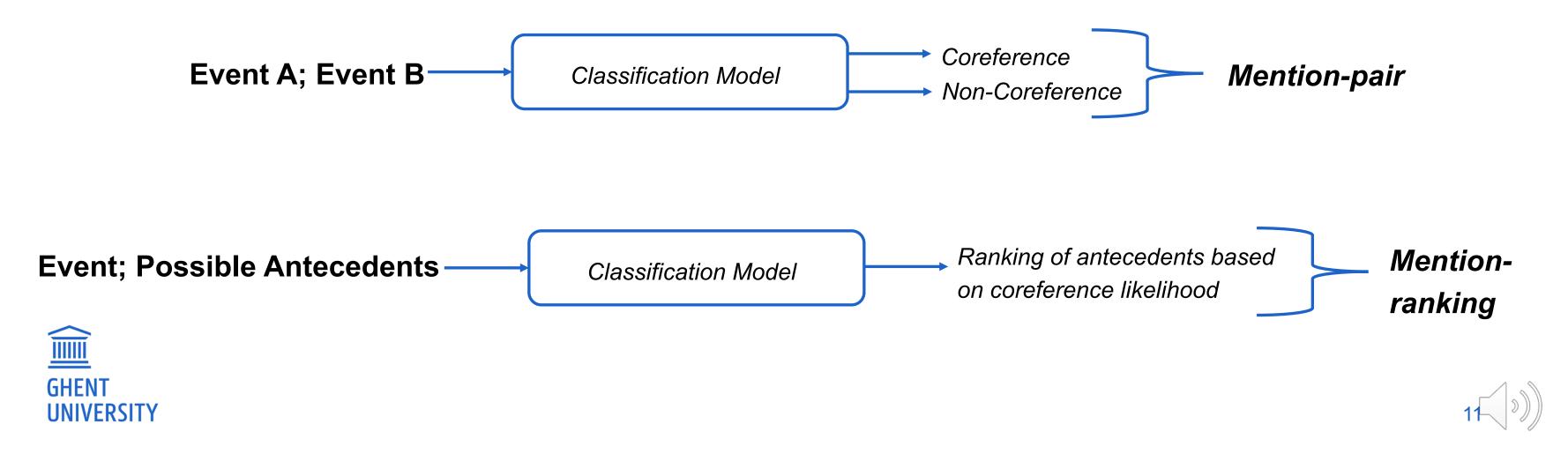

ENCORE CORPUS: OVERVIEW

Statistics

Description	Count
Documents	1115
Topics	91
Events	15407
Event Arguments	35315
Intra-document Event Coreference Chains	1018
Cross-Document Event Coreference Chains	1587

Graph 2: Distribution of Identity (28561) and Part-whole (15587) links between events

EXPERIMENTS



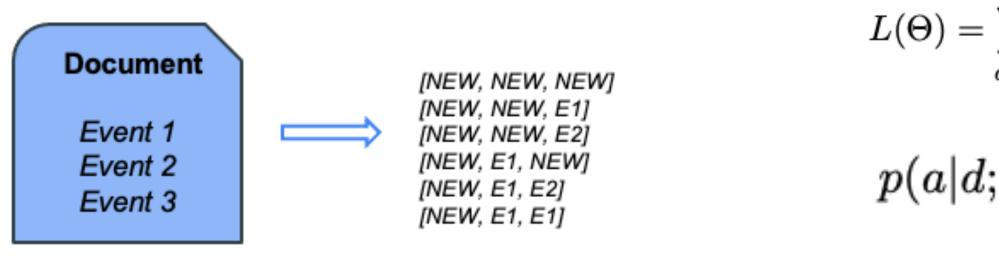
EXPERIMENTAL SETUP

Task Description

- Classification of coreference based on *gold-standard event* mentions
- For now, only identity links are considered
- Within-document and cross-document setting
- Experiments based on two existing paradigms in coreference studies:

EXPERIMENTAL SETUP: MENTION-PAIR MODELS

- Transformer-based language models
 - BERTje (de Vries et al., 2019)
 - RobBERT (*Delobelle et al., 2020*)
 - RobBERTje (Delobelle et al., 2022) \bullet
 - XLM-RobBERTa (Lample and Conneau, 2019) •
 - mBERT (*Devlin et al., 2019*) \bullet
- Traditional feature-based learning
 - Gradient-boosted Tree algorithm (*Chen et al., 2015*)
 - Features based on those used in English-language ECR studies \bullet
 - Lexical Similarity •
 - Discourse \bullet
 - Logical Constraining



EXPERIMENTAL SETUP: MENTION-RANKING MODEL

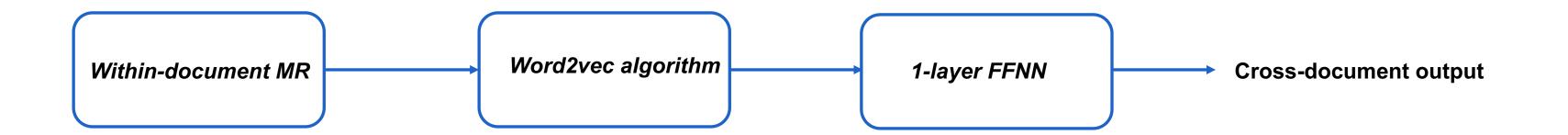
- Feature-based Mention-Ranking (Lu and Ng, 2017)
 - Log-linear coreference model
 - Ranking of Document partitions
 - Task-specific loss based on type of error

p(a|d; u

$$\sum_{d=1}^{t} \log \sum_{a \in A(C_d^*)} p(a|d;w)' + \lambda ||\Theta||_1$$
 (

$$(w)' \propto p(a|d;w)l(a, C_d^*)$$

$$(v) \propto exp(\sum_{i=1}^{n} w \cdot f(i, a_i, d))$$



EXPERIMENTAL SETUP: MENTION-RANKING MODELS

Cross-Document Mention-Ranking

- Poses <u>scalability</u> issues in memory 1.
- Creates artifical sparsity problem in the data 2.

Pairwise classification of within-document coreference chains

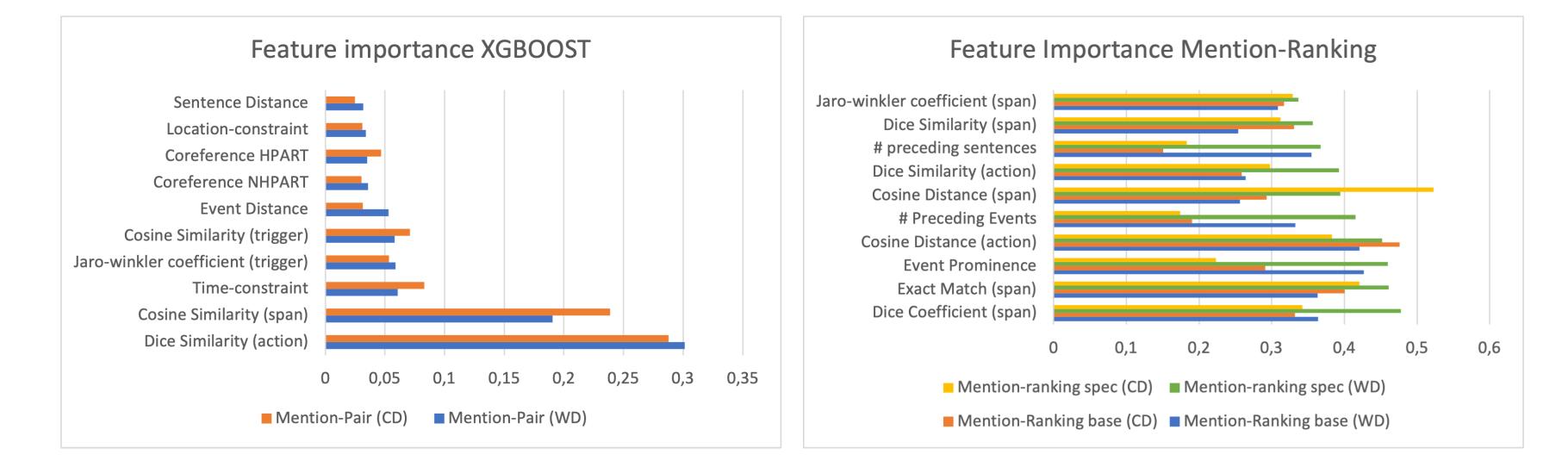
RESULTS AND DISCUSSION

IDENTIFYING IDENTITY COREFERENCE RELATIONS

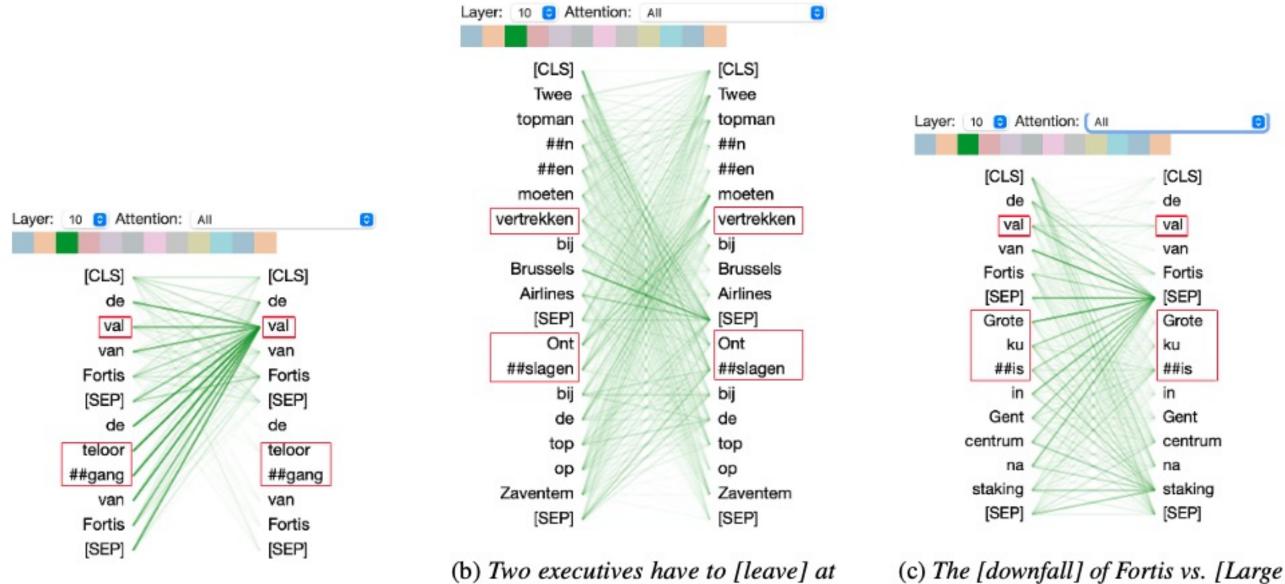
Results

	CONLL	LEA		CONLL	LEA
MP XGBoost	0.36	0.21	MP XGBOOST	0.37	0.23
MR _{base}	0.39	0.25	MR _{base}	0.35	0.22
$MR_{task-specific}$	0.42	0.26	$MR_{task-specific}$	0.38	0.25
MR Embedding _{base}	1	/	MR Embedding _{base}	0.36	0.24
MR Embedding _{task-specific}	1	/	MR Embedding _{task-specific}	0.40	0.28
MP BERTje	0.52	0.33	MP BERTje	0.59	0.39
MP RobBERT	0.49	0.29	MP RobBERT	0.56	0.38
MP RobBERTje	0.48	0.29	MP RobBERTje	0.54	0.35
MP XLM-RoBERTa	0.17	0.11	MP XLM-RoBERTa	0.23	0.14
MP mBERT	0.14	0.08	MP mBERT	0.19	0.10

(a) Results for within-document ECR


(b) Results for cross-document ECR

DISCUSSION: FEATURE-BASED MODELS



DISCUSSION: TRANSFORMER-BASED MODELS

Visualisation of transformer attention heads (Vig, 2019)

Brussels Airlines vs. [Dismissals] at

the top of Zaventem

(a) The [downfall] of Fortis vs. The [decline] of Fortis

GHENT

UNIVERSITY

strikes

cleanup] in Gent city center after

CONCLUSION AND FUTURE RESEARCH

ONCLUSION

Conclusion

- ENCORE corpus allows exploration of Dutch event coreference resolution
- Large number of baseline experiments performed using both transformer-based and feature-based methods
- Analysis of the baseline (feature-based) experiments show trends similar to ECR studies in English

Future work \bullet

- Integration of the baseline models into existing event mention detection sytems (pipeline architecture)
- Exploratory studies regarding event-subevent relationships
- Development of joint extraction-coreference systems for Dutch ECR using SpanBERT architectures, Graph Neural Networks (GNN), ...

