Quantifying Discourse Support for Omitted Pronouns

Shulin Zhang, Jixing Li, John Hale

CRAC 2022

Introduction

（1）这 是 我 给 他 后来 亩
zhe shi wo gei ta houlai hua

This is I for he later draw

出来	最好
chulai	zuihao
out	best

的	—幅	画像。
de	yifu	huaxiang
DE	one	drawing

＂This is the best portrait I drew for him later on．＂
（2）［我］六 岁 时，大人们 使 我 对
wo liu sui shi darenmen shi wo dui
［1］Six year old grown－ups make I towards my
＂When I was six，grown－ups made me lose courage in my painter career．＂

（3）	［我］	除了	画	过	开着	肚皮	和	闭着	肚皮	的	蟒蛇，
wo	chule	hua	guo	kaizhe	dupi	he	bizhe	dupi	de	mangshe	
	$[1]$	except	draw	PASS	opening	belly	and	closing	belly	DE	boa

＂Except that I had drawn boas with opening and closing belly，＂

（4）	［我］	后来	再	没有	学	过
画。						
wo	houlai	zai	meiyou	xue	guo	hua
	［I］	afterwards	again not	learn	PASS draw	
	＂I had never learned drawing afterwards．＂					

Introduction

What would make it possible for zero pronouns to be "zero"?

Introduction

What would make it possible for zero pronouns to be "zero"?

Discourse
 Coherence

Syntax Studies

Pragmatics Studies

Discourse Studies

Engineering Studies

Introduction

What would make it possible for zero pronouns to be "zero"?

Introduction

＂When I was six，grown－ups made me lose courage in my painter career．＂
＂Except that I had drawn boas with opening and closing belly，＂
（4）

［我］	后来	再	没有	学	过	画。
Wo	houlai	zai	meiyou	xue	guo hua	
$[I]$	afterwards	again not	learn	PASS draw		
＂I had	never learned drawing afterwards．＂					

（3）［我］除了 画 过 开着 胿皮 和 闭着 肚皮 的 蟒蛇，
wo chule hua -guo －kaizhe dupi he bizhe dupi de mangshe

Introduction

＂When I was six，grown－ups made me lose courage in my painter career．＂
$\begin{array}{llllllll}\text {（3）［我］} & \text { 除了 } & \text { 画 } & \text { 过 } & \text { 开着 } & \text { 肚皮 } & \text { 和 } \\ \text { wo chule hua } & \text { guo } & \text { kaizhe } & \text { dupi he } \\ \text {［I］except draw } & \text { PASS opening belly and } \\ \text {＂Except that I had drawn boas with opening and closing belly，＂}\end{array}$
＂I had never learned drawing afterwards．＂

Introduction

Assumption:

Compared to non-zero pronouns, zero pronouns have higher discourse coherence supporting them to be resolvable, so that we would expect their verb-usage continuity to be higher than the non-zero cases.

Method

	BERT "Bidirectional Encoder Representations from Transformers"	GloVe "Global Vectors for word representation"	Word2Vec "Word to vector"
Vector size	768 base model	300	300
Training task	Masked LM, Next sentence prediction	Aggregated global word-word co-occurrence statistics from a corpus	Local statistics, whether words appear in similar contexts (Window size = 5)
Feature catching	Bidirectional and contextual features	Global statistical features	Local statistical features

Roadmap

Salience \& Dropping Predictions pro-drop vs. non-pro-drop

Roadmap

Method

- Discourse material:
- Chinese translation of Saint-Exupéry's The Little Prince
- 2802 clauses, 16010 words
- Each of the clauses includes a main verb, and they were divided by ending with punctuations (i.e. ", . ; ? !")

Roadmap

Method

－Dependency parsing
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { ID } & \text { word } & \text { S } & \text { V } & \text { O } & \text { V－agent } & \text { V－patient } & \text { character } & \text { det＿character } \\ \hline 56 & \begin{array}{c}\text { 这些 } \\ \text { this }\end{array} & & & & & & & \\ \hline 57 & \begin{array}{c}\text { 蟆蛇 } \\ \text { boa }\end{array} & \text { 蟆蛇 } & & & & & \text { ch2＿boa } & \\ \hline 58 & \begin{array}{c}\text { 他 } \\ \text { BA }\end{array} & & & & & & & \\ \hline 59 & \begin{array}{c}\text { 它们 } \\ \text { them }\end{array} & & & & & & & \\ \hline 60 & \begin{array}{c}\text { 的 } \\ \text { DE }\end{array} & & & & & & & \\ \hline 61 & \begin{array}{c}\text { 猎获物 } \\ \text { prey }\end{array} & & & \text { 猎获物 }\end{array}\right)$

Table 1：Annotation columns

Method

－Semantic Role annotation

ID	word	S	V	0	V－agent	V－patient	character	det＿character
56	这些 this							
57	蟒蛇 boa	蟒蛇					ch2＿boa	
58	$\begin{aligned} & \text { 把 } \\ & \text { BA } \end{aligned}$							
59	它们 them							
60	$\begin{aligned} & \text { 的 } \\ & \mathrm{DE} \end{aligned}$							
61	猎获物 prey			猎获物				ch2 boa
62	$\begin{aligned} & \text { 不 } \\ & \text { not } \end{aligned}$							
63	$\begin{gathered} \text { 加 } \\ \text { add } \end{gathered}$							
64	咀嚼 chew		咀嚼		$\begin{gathered} 57 \\ \text { boa } \end{gathered}$	$\begin{gathered} 61 \\ \text { prey } \\ \hline \end{gathered}$		
65	$\begin{aligned} & \text { 地 } \\ & \text { DI } \end{aligned}$							
66	$\begin{aligned} & \text { 囫图 } \\ & \text { roughly } \end{aligned}$							
67	忝 swalllow		吞		$\begin{gathered} \hline 57 \\ \text { boa } \\ \hline \end{gathered}$	61 prey		
68	$\begin{gathered} \text { 下 } \\ \text { down } \end{gathered}$							

Table 1

Method

－Character Role annotation

ID	word	S	V	0	V－agent	V－patient	character	det＿character
56	$\begin{aligned} & \text { 这些 } \\ & \text { this } \end{aligned}$							
57	蟒蛇 boa	蟒蛇					ch2＿boa	
58	$\begin{aligned} & \text { 把 } \\ & \text { BA } \end{aligned}$							
59	它们 them							
60	$\begin{aligned} & \text { 的 } \\ & \mathrm{DE} \end{aligned}$							
61	猎获物 prey			猎获物				ch2 boa
62	不 not							
63	$\begin{gathered} \text { 加 } \\ \text { add } \end{gathered}$							
64	咀嚼 chew		咀嚼		$\begin{gathered} 57 \\ \text { boa } \end{gathered}$	$\begin{gathered} \hline 61 \\ \text { prey } \\ \hline \end{gathered}$		
65	$\begin{aligned} & \text { 地 } \\ & \text { DI } \end{aligned}$							
66	$\begin{aligned} & \text { 囫囵 } \\ & \text { roughly } \end{aligned}$							
67	吞 swalllow		吞		$\begin{gathered} 57 \\ \text { boa } \end{gathered}$	$\begin{gathered} 61 \\ \text { prey } \end{gathered}$		
68	$\begin{gathered} \text { 下 } \\ \text { down } \end{gathered}$							

Table 1：Annotation columns

Method

- Character Role annotation
- Pro-drop annotation
- Among all agent cases, 422 of them are dropped; only 16 cases of patient were dropped.
- In the following analyses, we focused on the agent cases.

Roadmap

Method

－Dynamic Character－Verb Usage Table

verb	回来
verb＿id	16008
agent＿character	ch4
prodrop	False
ch1＿prev＿verbs	（［只有，看到，想，用，画，画，让，画，放，放弃，当，泄，得，给，．．
ch2＿prev＿verbs	（［咀嚼，吞，动弹，消化，消化，开，闭，闭，危险，闭，开，开，闭］，．．．
ch3＿prev＿verbs	（［理解，看，懂，需要，解释，劝，靠，弄，懂，有，谈，认识，大人们，．．．
ch4＿prev＿verbs	（［朝，望，出现，给，像，没有，像，干，有，说道，回答，说，没有，．．．
ch5＿prev＿verbs	（［病，需要，像，睡，去，用，跑，跑，跑，到，跑，走，走，吃，吃．．．
．．．	．．．
ch30＿prev＿verbs	（［运载，发，往，朝着，开，过］，［12123，12128，12133，1．．．
ch31＿prev＿verbs	（［寻找，回来，满意，住，追随，追随，睡觉，打哈欠，拥挤，知道，寻找，．．．
ch32＿prev＿verbs	（［说道，贩卖，卖，说］，［12334，12339，12359，12372］）．

Table 3：Example of Verb－Character table

Method

verb	Come back
verb_id	16008
agent_character	ch4
pro_drop	False - Non-pro-drop
ch1_prev_verbs	Only have, see, want, use, draw, draw, let, ...
ch2_prev_verbs	chew, swallow, move, digest, digest, open, ...
ch3_prev_verbs	Understand, see, understand, need, explain, advise,...
ch4_prev_verbs	Towards, watch, show up, give, alike, not have, alike, ...
ch5_prev_verbs	Sick, need, alike, sleep, go, use, run, run, run, walk, walk, eat, eat...
\ldots	
ch30_prev_verbs	Carry, send, towards, drive, pass
ch31_prev_verbs	Seek, come, back, satisfy, live, follow,...
ch32_prev_verbs	Say, sell, sell, say

Roadmap

Method

Method

verb	Come back
verb_id	16008
agent_character	ch4 verb similarity
pro_drop	False - Non-pro-drop
ch1_prev_verbs	Only have see, want, use, draw, draw, let, ...
ch2_prev_verbs	chew, swallow, move, digest, digest, open, ...
ch3_prev_verbs	Understand, see, understand, need, explain, advise,...
ch4_prev_verbs	Towards, watch, show up, give, alike, not have, alike, ...
ch5_prev_verbs	Sick, need, alike, sleep, go, use, run, run, run, walk, walk, eat, eat...
\cdots	
ch30_prev_verbs	Carry, send, towards, drive, pass
ch31_prev_verbs	Seek, come, back, satisfy, live, follow,...
ch32_prev_verbs	Say, sell, sell, say

Method

- Verb similarity
- = cosine similarity between two word embedding vectors

$$
R\left(v_{\text {prev }}, v_{\text {curr }}\right)=\frac{v_{\text {prev }} \cdot v_{\text {curr }}}{\left\|v_{\text {prev }}\right\|\left\|v_{\text {curr }}\right\|}
$$

Cosine Distance/Similarity

Method

Method

- Verb similarity
= cosine similarity between two word embedding vectors

$$
R\left(v_{\text {prev }}, v_{\text {curr }}\right)=\frac{v_{\text {prev }} \cdot v_{\text {curr }}}{\left\|v_{\text {prev }}\right\|\left\|v_{\text {curr }}\right\|}
$$

- Verb-chain similarity

$$
\begin{array}{r}
R_{\text {weighted }}\left(\left[v_{\text {prev_ } 1}, \ldots, v_{\text {prev_ }}\right], v_{\text {curr }}\right)= \\
\sum_{i=1}^{n} \omega\left(c l_{-} p r e v_{-} i, c l_{-} \text {curr }\right) * R\left(v_{\text {prev_ }} i, v_{\text {curr }}\right) \tag{3}
\end{array}
$$

Method

- Verb similarity
= cosine similarity between two word embedding vectors

$R\left(v_{\text {prev }}, v_{\text {curr }}\right)=\frac{v_{\text {prev }} \cdot v_{\text {curr }}}{\left\|v_{\text {prev }}\right\|\left\|v_{\text {curr }}\right\|}$

- Verb-chain similarity

$$
\begin{gather*}
R_{\text {weighted }}\left(\left[v_{\text {prev_1_ } \left.\left., \ldots, v_{\text {prev_n }}\right], v_{\text {curr }}\right)=}^{\sum_{i=1}^{n} \omega\left(c l_{-} \text {prev_i,cl_curr }\right) * R\left(v_{\text {prev_i }}, v_{\text {curr }}\right)}\right.\right.
\end{gather*}
$$

Method

- Verb similarity

= cosine similarity between two word embedding vectors

- Verb-chain similarity

$$
\begin{gathered}
R_{\text {weighted }}\left(\left[v_{\text {prev_1_, } \left.\left.^{1}, v_{\text {prev_ }}\right], v_{\text {curr }}\right)}=\right.\right. \\
\sum_{i=1}^{n} \begin{array}{c}
\omega\left(c l_{-} \text {prev_} \quad i, c l_{_} \text {curr }\right)
\end{array} * R\left(v_{\text {prev_i } \left., v_{\text {curr }}\right)}^{\omega(j, k)=1 /(d+1)}\right. \\
d=|j-k|
\end{gathered}
$$

The decay function for weighted relevance

Method

Relevance Between History Verbs and Current Verb Based on Word Embeddings

Relevance Regressor	(Non-weighted relevance, Weighted relevance)
rel_glove_ch1	$(81.89066125531684,0.32419914580071807)$
rel_glove_ch2	$(1.8756812506219913,0.001503683756709864)$
\ldots	\ldots
rel_glove_ch32	$(0.8230171383397842,0.001262691669193839)$
rel_bert_ch1	$(176.59183087820725,0.6119750732174682)$
rel_bert_ch2	$(4.919826668243348,0.0027848581443943223)$
\ldots	\ldots
rel_bert_ch32	$(0.867459723760406,0.001329274033713714)$
rel_word2vec_ch1	$(134.572604613474,0.4595537826115222)$
rel_word2vec_ch2	$(2.8936049625643223,0.0020496541891822087)$
...	\ldots
rel_word2vec_ch32	$(0.9999583161919829,0.0015334960473239322)$
rel_baseline_ch1	$(-0.771830408650495,0.008005141647819333)$
rel_baseline_ch2	$(-0.008373434318707955,5.9110606393949324 \mathrm{e}-05)$
\ldots	\ldots
rel_baseline_ch32	$(0.08827132539725344,0.00013526127447238275)$

Table A5: Example of relevance results for the last verb

Method

Table 4: Regressors obtained after the relevance calculation

Roadmap

Method

verb	Come back
verb_id	16008
agent_character	ch4
pro_drop	False - Non-pro-drop
ch1_prev_verbs	Only have, see, want, use, draw, draw, let, ...
ch2_prev_verbs	chew , swallow, move, digest, digest, open, ...
ch3_prev_verbs	Understand, see, understand, need, explain, advise,...
ch4_prev_verbs	Towards, watch, show up, give, alike, not have, alike, ...
ch5_prev_verbs	Sick, need, alike, sleep, go, use, run, run, run, walk, walk, eat, eat...
\ldots	
ch30_prev_verbs	Carry, send, towards, drive, pass
ch31_prev_verbs	Seek, come, back, satisfy, live, follow,...
ch32_prev_verbs	Say, sell, sell, say

Method

Method

- Correct character 's verb-chain-similarity salience

$$
\begin{equation*}
S(k)=\frac{\sum_{i=1}^{n}\left(\frac{R_{\text {weighted }}(k)+1}{R_{\text {weighted }}(i)+1}\right)}{n+1} \tag{4}
\end{equation*}
$$

[^0]
Method

- Correct character 's verb-chain-similarity salience

$$
S(k)=\frac{\sum_{i=1}^{n}\left(\frac{\text { Correct character's accumulated Relevance }}{\left.\frac{R_{\text {weighted }}(k)+1}{R_{\text {weighted }}(i)+1}\right)}\right.}{n+1}
$$

[^1]
Method

- Correct character 's verb-chain-similarity salience

$$
S(k)=\frac{\sum_{i=1}^{n}\left(\frac{R_{\text {weighted }}(k)+1}{\left[\frac{R_{\text {weighted }}(i)+1}{}\right)}\right.}{n+1_{\text {other character's accumulated Relevance }}}
$$

[^2]
Method

- Correct character 's verb-chain-similarity salience

$$
\begin{equation*}
S(k)=\frac{\sum_{i=1}^{n}\left(\frac{R_{\text {weighted }}(k)+1}{R_{\text {weighted }}(i)+1}\right)}{n+1} \tag{4}
\end{equation*}
$$

[^3]
Method

(f)

Salience of the Correct Character based on Relevance

Regressor	Example value
verb	回来 (come back)
correct character	ch4
pro-drop	False
salience-glove-unweighted	45.761057
salience-bert-unweighted	57.886974
salience-word2vec-unweighted	56.125342
salience-baseline-unweighted	1.087911
salience-glove-weighted	1.206085
salience-bert-weighted	1.522071
salience-word2vec-weighted	1.427663
salience-baseline-weighted	0.979743

Table A6: Example of salience result of the last verb

Methods

Verb-id	pro-drop	Correct character salience
1	False	1.65
2	True	5.86
3	False	1.22
\ldots		
16007	True	4.12
16008	False	3.51

Roadmap

Salience \& Dropping Predictions pro-drop vs. non-pro-drop

Results

(a) Salience distribution of word embedding models with verb distance weighted

- Character salience distribution:
- non-pro-drop vs. pro-drop
(b) Salience distribution of word embedding models without verb distance weighted

Results

- Ranged character salience group comparison:

		Correct character salience pro-drop >non-pro-drop ($\mathrm{n}=422$)							
Candidates' Range		range $=$ all		range <10 clause		range <20 clause		range <30 clause	
		t-value	p-value	t-value	p-value	t-value	p-value	t-value	p-value
DistanceWeighted	GloVe	49090.319	0.063	51137.593	0.012*	52598.233	0.003**	52121.241	0.004**
	BERT	50555.45	0.023*	45310.076	0.029*	52105.854	0.005**	51582.819	0.008**
	Word2Vec	50358.954	0.025*	51268.800	0.011*	52747.81	0.002**	52246.569	0.004**
	Baseline	44656.318	0.496	44737.336	0.483	49199.853	0.060	47875.291	0.134
DistanceUnweighted	GloVe	39345.494	0.959	44384.169	0.531	43818.383	0.606	43837.85	0.604
	BERT	42867.41	0.724	45310.076	0.411	45187.343	0.425	45220.75	0.421
	Word2Vec	40865.782	0.898	45236.126	0.420	44672.755	0.494	44630.117	0.498
	Baseline	43149.674	0.690	45940.625	0.330	46398.831	0.275	45552.563	0.377

Table 3: Single-sided nonparametric two-sample Wilcoxon test between pro-drop and non-pro-drop salience values among three word embedding models and the baseline model: With candidates included as all candidates, candidates within 10 clauses, 20 clauses, and 30 clauses.

Results

- Logistic regression model predicting dropping behaviour: Ranged salience results

> Logistic Regression Model

Pro-drop Prediction Accuracy

Candidates' Range		range $=$ all	range <10 clause	range <20 clause	range <30 clause
DistanceWeighted	GloVe	0.518	0.535	0.527	0.539
	BERT	0.538	0.532	0.536	0.546
	Word2Vec	0.534	0.535	0.537	0.552
	Baseline	0.497	0.489	0.495	0.498
DistanceUnweighted	GloVe	0.524	0.487	0.490	0.485
	BERT	0.493	0.488	0.492	0.482
	Word2Vec	0.514	0.485	0.482	0.473
	Baseline	0.485	0.485	0.485	0.485

Table 4: Pro-drop prediction accuracy results of the Logistic Regression model from three word embedding models and one baseline model: salience value calculated based on all previous clauses and ranged clauses.

Discussion

- Language models and their performances
- Group t-test and logistic regression results are consistent: showing the performance ordering as: BERT > word2vec > GloVe

1. BERT: bidirectional and contextual
2. Word2Vec: local statistical features
3. GloVe: global statistical features

- Ranged character salience improves t-test significance level and prediction accuracy
- Distance-weighted models show zero > non-zero salience effect; unweighted models do not show this effect

Discussion

- Language models and their performances
- Group t-test and logistic regression results are consistent: showing the performance ordering as: BERT > word2vec > GloVe

1. BERT: bidirectional and contextual
2. Word2Vec: local statistical features
3. GloVe: global statistical features

- Ranged character salience improves t-test significance level and prediction accuracy
- Distance-weighted models show zero > non-zero salience effect; unweighted models do not show this effect

Discussion

- Language models and their performances
- Group t-test and logistic regression results are consistent: showing the performance ordering as: BERT > word2vec > GloVe

1. BERT: bidirectional and contextual
2. Word2Vec: local statistical features
3. GloVe: global statistical features

- Ranged character salience improves t-test significance level and prediction accuracy
- Distance-weighted models show zero > non-zero salience effect; unweighted models do not show this effect

Discussion

- Language models and their performances
- Group t-test and logistic regression results are consistent: showing the performance ordering as: BERT > word2vec > GloVe

1. BERT: bidirectional and contextual
2. Word2Vec: local statistical features
3. GloVe: global statistical features

- Ranged character salience improves t-test significance level and prediction accuracy
- Distance-weighted models show zero > non-zero salience effect; unweighted models do not show this effect

Conclusions

- This study quantifies character-verb usage continuity as an aspect of discourse that helps comprehenders resolve omitted pronouns. Omitted pronouns tend to show higher verb usage consistency compared to pronounced entities, and this effect is strengthened by clause recency.

Thank you!

Prof. John Hale

Department of Linguistics
Franklin College of Arts and Sciences
UNIVERSITY OF GEORGIA

[^0]: Note: the " +1 " s in this function are assigned to keep the division
 denominator as non-zero, and balanced for the numerator

[^1]: Note: the "+1" s in this function are assigned to keep the division
 denominator as non-zero, and balanced for the numerator

[^2]: Note: the "+1" s in this function are assigned to keep the division
 denominator as non-zero, and balanced for the numerator

[^3]: Note: the "+1" s in this function are assigned to keep the division
 denominator as non-zero, and balanced for the numerator

