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Motivation

Source:

When she ran down, the left slipper remained stuck in the stairs, it was 
small and dainty.

MT:

Quand elle a couru, la pantoufle gauche est restée coincée dans les 
escaliers, il était petit et délicat.
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Motivation
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Source: Pertenezco a un partido político respetable. 

– ¿Qué partido?

Reference: I belong to a respectable political party. 

– Which party?

MT: I belong to a respectable political party. 

– What a match?



Machine Translation (MT)

𝒆𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔max
𝑒

𝑝 𝒆 𝒇

𝒆 = 𝑒1, 𝑒2, … , 𝑒𝑛

𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑚)

Sentence in target language

Sentence in source language
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Machine Translation (MT)
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• Approaches:

• PBSMT: Phase-based statistical machine translation

• NMT: Neural machine translation

• Evaluation made comparing with human translation as reference. 
Common metric:

• BLEU:  n-gram precision



Coreference Resolution

• Linking or grouping mentions that refer to the same entity in a text.

• Mentions:   nouns, pronouns, noun-phrases, …

• Entities:   people, object, places, …

• Links:   coreference links, mention clusters, mention chains, …

• Evaluation made comparing with ground-truth. Common metrics:

• MUC:   number of links to be inserted or deleted.

• B3:   precision and recall at cluster-level for each mention.

• CEAF:   precision and recall at cluster-level for each entity.
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Coreference-aware MT

Source
Document

Machine 
Translator

Coreference-
aware MT

Coreference 
resolver

Target
Document
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▪ State-of-the-art
▪ Contribution

Objective: Improve the translation of documents by including 
coreference constraints.



Coreference in translation

Source (Spanish) 1

La película narra la historia de [un 
joven parisiense]c1 que marcha a 
Rumanía en busca de [una
cantante zíngara]c2, ya que [su]c1

fallecido padre escuchaba
siempre [sus]c2 canciones.
Pudiera considerarse un viaje
fallido, porque [∅]c1 no encuentra
[su]c1 objetivo, pero el azar [le]c1

conduce a una pequeña
comunidad...

1 Example from AnCora-CO with manual annotation of coreferences.
2 Automatic coreference resolution with Stanford CoreNLP (http://stanfordnlp.github.io/CoreNLP/coref.html)
3 Translation with a free online NMT 11

Source (Spanish) 1 Human Translation2

La película narra la historia de [un 
joven parisiense]c1 que marcha a 
Rumanía en busca de [una
cantante zíngara]c2, ya que [su]c1

fallecido padre escuchaba
siempre [sus]c2 canciones.
Pudiera considerarse un viaje
fallido, porque [∅]c1 no encuentra
[su]c1 objetivo, pero el azar [le]c1

conduce a una pequeña
comunidad...

The film tells the story of [a young 
Parisian]c1 who goes to Romania 
in search of [a gypsy singer]c2 , as 
[his]c1 deceased father use to 
listen to [her]c2 songs.

It could be considered a failed 
journey, because [he]c1 does not 
find [his]c1 objective, but the fate 
leads [him]c1 to a small 
community... 

Source (Spanish) 1 Human Translation2 Machine Translation2 3

La película narra la historia de [un 
joven parisiense]c1 que marcha a 
Rumanía en busca de [una
cantante zíngara]c2, ya que [su]c1

fallecido padre escuchaba
siempre [sus]c2 canciones.
Pudiera considerarse un viaje
fallido, porque [∅]c1 no encuentra
[su]c1 objetivo, pero el azar [le]c1

conduce a una pequeña
comunidad...

The film tells the story of [a young 
Parisian]c1 who goes to Romania 
in search of [a gypsy singer]c2 , as 
[his]c1 deceased father use to 
listen to [her]c2 songs.

It could be considered a failed 
journey, because [he]c1 does not 
find [his]c1 objective, but the fate 
leads [him]c1 to a small 
community... 

The film tells the story of [a young 
Parisian]c1 who goes to Romania 
in search of [a gypsy singer]c2 , as 
[his]c2 deceased father always 
listened to [his]c2 songs.

It could be considered [a failed 
trip]c3 because [it]c3 does not 
find [its]c3 objective, but the 
chance leads to ∅ a small 
community...



Defining Coreference Similarity Score

Source 𝑑𝑠 Translation 𝑑𝑡
1. Apply coreference 

resolver on both sides.

2. Find alignments of 
mentions.

3. Calculate MUC, B3, and 
CEAF
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Ground-truth Evaluated 
document



Empirical Verification

• Data: 3 K words from AnCora-CO with manual annotation of coreferences.
• Automatic coreference resolution with Stanford CoreNLP (http://stanfordnlp.github.io/CoreNLP/coref.html)
• Implementation of metrics from CoNLL 2012 (http://conll.cemantix.org/2012/)

Translation 
Quality

BLEU MUC B3 CEAF

Human translation - 37 32 41

Commercial NMT 49.7 28 26 36

Baseline PBSMT 43.4 23 24 33

Coreference 
Quality

Values of F1 in % 
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http://stanfordnlp.github.io/CoreNLP/coref.html
http://conll.cemantix.org/2012/


Proposed approaches
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1. Re-ranking of n-best sentences
 Changes at sentence-level
 Scoring at document-level

2. Post-editing of mentions 
 Changes at mention-level
 Scoring at cluster-level



Re-ranking 

Sentence 1 Sentence 2 Sentence 3 Sentence N…Source 𝑑𝑠

15

ℎ𝑦𝑝1
1 ℎ𝑦𝑝2

1 ℎ𝑦𝑝3
1 ℎ𝑦𝑝𝑀

1Translation 𝑑𝑡

…

ℎ𝑦𝑝1
2 ℎ𝑦𝑝2

2 ℎ𝑦𝑝3
2 ℎ𝑦𝑝𝑀

2…

ℎ𝑦𝑝1
4 ℎ𝑦𝑝2

4 ℎ𝑦𝑝3
4 ℎ𝑦𝑝𝑀

4

…

… …………

ℎ𝑦𝑝1
3 ℎ𝑦𝑝2

3 ℎ𝑦𝑝3
3 ℎ𝑦𝑝𝑀

3 N-best
by MT 
system



𝒉𝒚𝒑𝟏
𝟏 𝒉𝒚𝒑𝟐

𝟏 𝒉𝒚𝒑𝟑
𝟏 𝒉𝒚𝒑𝑵

𝟏…

…

ℎ𝑦𝑝1
2 ℎ𝑦𝑝2

2 ℎ𝑦𝑝3
2 ℎ𝑦𝑝𝑁

2…

ℎ𝑦𝑝1
4 ℎ𝑦𝑝2

4 ℎ𝑦𝑝3
4 ℎ𝑦𝑝𝑁

4

…

… …………

ℎ𝑦𝑝1
3 ℎ𝑦𝑝2

3 ℎ𝑦𝑝3
3 ℎ𝑦𝑝𝑁

3

Sentence 1 Sentence 2 Sentence 3 Sentence N…

Translation 
by MT system
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Source 𝑑𝑠

Translation 𝑑𝑡

Re-ranking 



Sentence 1 Sentence 2 Sentence 3 Sentence M…

ℎ𝑦𝑝1
1 ℎ𝑦𝑝2

1 ℎ𝑦𝑝3
1 ℎ𝑦𝑝𝑀

1…

…

ℎ𝑦𝑝1
2 ℎ𝑦𝑝2

2 ℎ𝑦𝑝3
2 ℎ𝑦𝑝𝑀

2…

ℎ𝑦𝑝1
4 ℎ𝑦𝑝2

4 ℎ𝑦𝑝3
4 ℎ𝑦𝑝𝑀

4

…

… …………

ℎ𝑦𝑝1
3 ℎ𝑦𝑝2

3 ℎ𝑦𝑝3
3 ℎ𝑦𝑝𝑀

3 N-best
by MT 
system
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑖𝑚 𝑑𝑡 , 𝑑𝑠 𝐶𝑠𝑖𝑚 = 𝑀𝑈𝐶 + 𝐵3 + 𝐶𝐸𝐴𝐹 /3

Source 𝑑𝑠

Translation 𝑑𝑡

Re-ranking 



Sentence 1 Sentence 2 Sentence 3 Sentence N…

ℎ𝑦𝑝1
1 ℎ𝑦𝑝2

1 ℎ𝑦𝑝3
1 ℎ𝑦𝑝𝑁

1…

…

𝒉𝒚𝒑𝟏
𝟐 ℎ𝑦𝑝2

2 ℎ𝑦𝑝3
2 ℎ𝑦𝑝𝑁

2…

ℎ𝑦𝑝1
4 ℎ𝑦𝑝2

4

ℎ𝑦𝑝3
3

ℎ𝑦𝑝𝑁
4

…

… …………

ℎ𝑦𝑝1
3 ℎ𝑦𝑝2

3

ℎ𝑦𝑝3
4

ℎ𝑦𝑝𝑁
3

Translation 
by Re-ranking

✓ Remove sentences with same set of mentions.
✓ Beam search
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑖𝑚 𝑑𝑡 , 𝑑𝑠 𝐶𝑠𝑖𝑚 = 𝑀𝑈𝐶 + 𝐵3 + 𝐶𝐸𝐴𝐹 /3

Source 𝑑𝑠

Translation 𝑑𝑡

Re-ranking 

𝒉𝒚𝒑𝟐
𝟏

𝒉𝒚𝒑𝟑
𝟑

𝒉𝒚𝒑𝑵
𝟐



✓Optimization at document-level.
✓Simple to use with a MT system.

 Not all mentions in a sentence can be optimized at the same time.
 Need to run coreference resolver at each step. 
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Re-ranking 



Post-editing

Source 𝑑𝑠 Translation 𝑑𝑡
1. Apply coreference 

resolver on source side.

2. Find translation 
hypothesis of mentions 
in target side.

3. For each cluster: select 
the hypotheses that are 
more likely to refer to 
the same entity. 

20



Post-editing 

…Source cluster 𝑐𝑖 Mention 1 Mention 2 Mention 3 Mention M…
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ℎ𝑦𝑝1
1 ℎ𝑦𝑝2

1 ℎ𝑦𝑝3
1 ℎ𝑦𝑝𝑀

1…Translation

…

ℎ𝑦𝑝1
2 ℎ𝑦𝑝2

2 ℎ𝑦𝑝3
2 ℎ𝑦𝑝𝑀

2…

ℎ𝑦𝑝1
4 ℎ𝑦𝑝2

4 ℎ𝑦𝑝3
4 ℎ𝑦𝑝𝑀

4

…

… …………

ℎ𝑦𝑝1
3 ℎ𝑦𝑝2

3 ℎ𝑦𝑝3
3 ℎ𝑦𝑝𝑀

3 N-best
by MT 
system

𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity



Post-editing 

𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 = 𝐶𝑠
𝜆1 . 𝐸𝑠

𝜆2 . 𝑇𝑠
𝜆3

Cluster score:
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𝑖

𝜆𝑖 = 1

Elements in cluster Entity representation 
from source

Translation frequency



Post-editing 

Source cluster 𝑐1 Partido politico fue partido que

Political party was match thatTranslation

It was party which

She was

He was who
N-best
by MT 
system
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Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho

Reordering 
for number 
of options
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Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity

N-best
by MT 
system



Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity

N-best
by MT 
system



Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity

N-best
by MT 
system



Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity

N-best
by MT 
system



Post-editing 

Source cluster 𝑐1 Partido politico fuepartido que

Political party wasmatch thatTranslation

It wasparty which

She was

He waswho
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 𝐶𝑠𝑐𝑜𝑟𝑒 𝑐𝑥 : Likelihood that all mentions in 𝑐𝑖 refer to the 
same entity

N-best
by MT 
system
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Baselines

System Training1 Tuning1 2 Testing1 3 Language
model

BLEU

PBSMT1 1.9 M 5 K 3 K 3-gram 1.9 M 24.51

NMT1 1.9 M 5 K 3 K None 21.53

PBSMT2 7.6 M 5 K 3 K 3-gram 7.6 M 25.43

NMT2 7.6 M 5 K 3 K None 25.65

PBSMT3 14 M 5 K 3 K 4-gram 17 M 30.81

NMT3 14 M 5 K 3 K None 32.21

1 Data from WMT 2013 Spanish-English.
2 News-test 2010-2011
3 News-test 2013 31

M: million sentences
K: thousand sentences



Evaluation Metrics

• BLEU

APT: Accuracy of pronoun translation. 
Uses human translation as reference. It verifies:
• Equal pronouns: exact match with reference.
• Equivalent pronouns: learned from manual evaluation.

ANT: Accuracy of noun translation

32



Evaluation

34

Metric PBSMT NMT
PBSMT +
Re-rank

PBSMT +
Post-edit

PBSMT +
Post-edit

(automatic CR)

BLEU 46.5±4.3 46.9±3.7 41.7±3.9*** 46.4±3.9 46.1±4.3

APT (pronouns) 0.35±0.07 0.37±0.07 0.40±0.1* 0.59±0.13*** 0.41±0.07*

ANT (nouns) 0.78±0.08 0.78±0.07 0.74±0.01*** 0.78±0.07 0.76±0.09

Average and standard deviation over the test documents. 
Statistical significance: * for 95.0%, ** for 99.0%, and *** for 99.9%

▪ State-of-the-art
▪ Contribution



Human Evaluation
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Evaluation PBSMT
PBSMT +
Re-rank

PBSMT +
Post-edit

Wrong 53 55 21

Acceptable 21 19 28

Identical to 
reference

115 115 140

▪ State-of-the-art
▪ Contribution



Correctly Modified Example
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Source: 
[Barton]3 , por [su]3 parte , también dudó de la capacidad de [Megawati]2 en [su]2

[nueva tarea] 4 .
Reference: 
[Barton] 3 , for [his] 3 part , also doubted [Megawati] 2 ’s ability in [her] 2 [new task] 4 .
Baseline:
[Barton] 3 , for [its] 3 part , also doubted the capacity of [Megawati] 2 in [his] 2 [new 
task] 4 .
Post-editing: 
[Barton] 3 , for [his] 3 part , also doubted the capacity of [Megawati] 2 in [her] 2 [new 
task] 4 .



Correctly Modified Example
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Source:
... que “ [parece estar]2 abrumada ... críticos consideran que [no será]2 capaz de 
hacerse con el papel de líder .
Reference:
...that “ [she seems]2 overwhelmed ... critics consider [she will not be]2 able to take 
the lead role .
Baseline:
... that “ [appears to be]2 overwhelmed ... critics believe that [it will not be]2 able 
to take a leading role . 2

Post-editing: 
...that “ [she seems]2 to be overwhelmed ... critics believe that [she will not be]2

able to take a leading role
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Conclusion

✓ Optimization at document-level including coreferences
✓ Post-editing approach improves pronouns translation

Optimal solution (from reference) is not in the n-best 
hypothesis in ~20% of the cases

 Accuracy of coreference resolution is a limitation (~65% for 
English)
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Future Work

✓ Testing on a larger dataset.
✓ Integration with the decoder of machine translation.
✓ Experiment application to neural machine translation.
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Thanks
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