

Using Coreference Links to Improve Spanish-to-English Machine Translation

Lesly Miculicich

Andrei Popescu-Belis

Content

- 1. Introduction
- 2. Coreference aware machine translation
- 3. Experiments and results
- 4. Conclusion

Content

1. Introduction

- 2. Coreference aware machine translation
- 3. Experiments and results
- 4. Conclusion

Motivation

Source:

When she ran down, **the left slipper** remained stuck in the stairs, **it** was small and dainty.

MT:

Quand elle a couru, la pantoufle gauche est restée coincée dans les escaliers, il était petit et délicat.

Motivation

Source: Pertenezco a un partido político respetable. – ¿Qué partido?

Reference: I belong to a respectable political **party**. – Which **party**?

MT: I belong to a respectable political party.What a match?

Machine Translation (MT)

$$e_{best} = \underset{e}{argmax} p(e|f)$$

Sentence in target language

Sentence in source language

$$e = (e_1, e_2, ..., e_n)$$

 $f = (f_1, f_2, ..., f_m)$

Machine Translation (MT)

- Approaches:
 - **PBSMT**: Phase-based statistical machine translation
 - **NMT**: Neural machine translation
- Evaluation made comparing with <u>human translation as reference</u>.
 Common metric:
 - **BLEU**: *n*-gram precision

Coreference Resolution

- <u>Linking</u> or grouping <u>mentions</u> that refer to the same <u>entity</u> in a text.
 - Mentions: nouns, pronouns, noun-phrases, ...
 - Entities: people, object, places, ...
 - Links: coreference links, mention clusters, mention chains, ...
- Evaluation made comparing with ground-truth. Common metrics:
 - **MUC:** number of links to be inserted or deleted.
 - **B³:** precision and recall at cluster-level for each mention.
 - **CEAF:** precision and recall at cluster-level for each entity.

Content

1. Introduction

2. Coreference aware machine translation

- 3. Experiments and results
- 4. Conclusion

Objective: Improve the translation of documents by including coreference constraints.

Coreference in translation

Source (Spanish) ¹	Human Translation ²	Machine Translation ^{2 3}
La película narra la historia de [un joven parisiense] _{c1} que marcha a Rumanía en busca de [una cantante zíngara] _{c2} , ya que [su] _{c1} fallecido padre escuchaba	The film tells the story of [a young Parisian] _{c1} who goes to Romania in search of [a gypsy singer] _{c2} , as [his] _{c1} deceased father use to listen to [her] _{c2} songs.	The film tells the story of [a young Parisian] _{c1} who goes to Romania in search of [a gypsy singer] _{c2} , as [his] _{c2} deceased father always listened to [his] _{c2} songs.
siempre [sus] _{c2} canciones. Pudiera considerarse un viaje fallido, porque [Ø] _{c1} no encuentra [su] _{c1} objetivo, pero el azar [le] _{c1} conduce a una pequeña comunidad	It could be considered a failed journey, because [he] _{c1} does not find [his] _{c1} objective, but the fate leads [him] _{c1} to a small community	It could be considered [a failed trip] _{c3} because [it] _{c3} does not find [its] _{c3} objective, but the chance leads to \emptyset a small community

- ¹ Example from AnCora-CO with manual annotation of coreferences.
- ² Automatic coreference resolution with Stanford CoreNLP (http://stanfordnlp.github.io/CoreNLP/coref.html) ³ Translation with a free online NMT

Defining Coreference Similarity Score

- 1. Apply coreference resolver on both sides.
- 2. Find alignments of mentions.
- 3. Calculate MUC, B3, and CEAF

Empirical Verification

		BLEU	MUC	B ³	CEAF	
Translation Quality	Human translation	-	37	32	41	
	Commercial NMT	49.7	28	26	36	
	Baseline PBSMT	43.4	23	24	33	

Coreference Quality

Values of F1 in %

- Data: 3 K words from AnCora-CO with manual annotation of coreferences.
- Automatic coreference resolution with Stanford CoreNLP (<u>http://stanfordnlp.github.io/CoreNLP/coref.html</u>)
- Implementation of metrics from CoNLL 2012 (<u>http://conll.cemantix.org/2012/</u>)

Proposed approaches

1. Re-ranking of *n*-best sentences

- \rightarrow Changes at sentence-level \rightarrow Scoring at document-level
- Post-editing of mentions
 → Changes at mention-level
 → Scoring at cluster-level

 $C_{sim} = (MUC + B^3 + CEAF)/3$ $argmax C_{sim}(d_t, d_s)$

 $C_{sim} = (MUC + B^3 + CEAF)/3$ $argmax C_{sim}(d_t, d_s)$

✓ Remove sentences with same set of mentions.

✓ Beam search

✓ Optimization at document-level.✓ Simple to use with a MT system.

× Not all mentions in a sentence can be optimized at the same time.
× Need to run coreference resolver at each step.

Post-editing

- 1. Apply coreference resolver on source side.
- Find translation hypothesis of mentions in target side.
- For each cluster: select the hypotheses that are more likely to refer to the same entity.

Post-editing

$argmax C_{score}(c_x)$

$C_{score}(c_x)$: Likelihood that all mentions in c_i refer to the same entity

Post-editing

Cluster score:

Content

- 1. Introduction
- 2. Coreference aware machine translation
- 3. Experiments and results
- 4. Conclusion

Baselines

System	Training ¹	Tuning ¹²	Testing ¹³	Language model	BLEU
PBSMT ₁	1.9 M	5 K	3 K	3-gram 1.9 M	24.51
NMT ₁	1.9 M	5 K	3 K	None	21.53
PBSMT ₂	7.6 M	5 K	3 K	3-gram 7.6 M	25.43
NMT ₂	7.6 M	5 K	3 K	None	25.65
PBSMT ₃	14 M	5 K	3 K	4-gram 17 M	30.81
NMT ₃	14 M	5 K	3 K	None	32.21

M: million sentences K: thousand sentences

¹ Data from WMT 2013 Spanish-English.

² News-test 2010-2011

³ News-test 2013

Evaluation Metrics

APT: Accuracy of pronoun translation. Uses human translation as reference. It verifies:

- Equal pronouns: exact match with reference.
- Equivalent pronouns: learned from manual evaluation.
- → ANT: Accuracy of noun translation

Evaluation

- State-of-the-art
- Contribution

Metric	PBSMT	NMT	PBSMT + Re-rank	PBSMT + Post-edit	PBSMT + Post-edit (automatic CR)
BLEU	46.5 <u>+</u> 4.3	46.9 <u>+</u> 3.7	41.7 <u>+</u> 3.9***	46.4 <u>+</u> 3.9	46.1 <u>+</u> 4.3
APT (pronouns)	0.35 <u>+</u> 0.07	0.37 <u>±</u> 0.07	0.40 <u>+</u> 0.1*	0.59 <u>+</u> 0.13***	0.41±0.07*
ANT (nouns)	0.78 <u>+</u> 0.08	0.78 <u>+</u> 0.07	0.74±0.01***	0.78 <u>+</u> 0.07	0.76 <u>+</u> 0.09

Average and standard deviation over the test documents.

Statistical significance: * for 95.0%, ** for 99.0%, and *** for 99.9%

Human Evaluation

- State-of-the-art
- Contribution

Evaluation	PBSMT	PBSMT + Re-rank	PBSMT + Post-edit
Wrong	53	55	21
Acceptable	21	19	28
Identical to reference	115	115	140

Correctly Modified Example

Source:

 $[Barton]_3$, por $[su]_3$ parte, también dudó de la capacidad de $[Megawati]_2$ en $[su]_2$ [nueva tarea]₄.

Reference:

[Barton] ₃ , for **[his] ₃** part , also doubted [Megawati] ₂ 's ability in **[her] ₂** [new task] ₄ . Baseline:

[Barton] $_3$, for **[its] _3** part , also doubted the capacity of [Megawati] $_2$ in **[his] _2** [new task] $_4$.

Post-editing:

 $[{\rm Barton}]_3$, for $[{\rm his}]_3$ part , also doubted the capacity of $[{\rm Megawati}]_2$ in $[{\rm her}]_2$ [new task] $_4$.

Correctly Modified Example

Source:

... que " [parece estar]₂ abrumada ... críticos consideran que [no será]₂ capaz de hacerse con el papel de líder .

Reference:

...that " [she seems]₂ overwhelmed ... critics consider [she will not be]₂ able to take the lead role .

Baseline:

... that " [appears to be]₂ overwhelmed ... critics believe that [it will not be]₂ able to take a leading role . $_2$

Post-editing:

...that " [she seems]₂ to be overwhelmed ... critics believe that [she will not be]₂ able to take a leading role

Content

- 1. Introduction
- 2. Coreference aware machine translation
- 3. Experiments and results
- 4. Conclusion

Conclusion

- Optimization at document-level including coreferences
 Post-editing approach improves pronouns translation
- × Optimal solution (from reference) is not in the *n*-best hypothesis in ~20% of the cases
- Accuracy of coreference resolution is a limitation (~65% for English)

Future Work

- ✓ Testing on a larger dataset.
- \checkmark Integration with the decoder of machine translation.
- ✓ Experiment application to neural machine translation.

Thanks